
The BBCut Library

Nick Collins

Proceedings of the International Computer Music Conference 2002

Current contact: http://www.cus.cam.ac.uk/~nc272/

Abstract

To facilitate work on automated breakbeat cutting it was expedient to establish a general framework promoting
better code reusability. This framework is a publicly released collection of SuperCollider classes and help files
called the BBCut Library. Whilst notionally for the cutting of breakbeat samples, its remit is much wider, into the
use of algorithmic composition techniques to cut up any source audio.

 The library is based upon a specific hierarchy of phrase/block/cut sufficient to implement a wide variety of cut
procedures. Hierarchical information allows cut aware effects which can update parameters in coordination with
rhythmic events.

 The benefits of the library include the interchangeable use of any type of synthesis and source with any cut
procedure. This makes it much simpler to write a new cut procedure which is immediately able to cut any target
signal.

1. BACKGROUND

The BBCut Library began out of work on an
algorithm to simulate the automatic cutting of
breakbeats in the style of early jungle or drum and
bass [Collins 2001a]. As the present author began to
write further types of cut sequence generator they
realised that they were continually repeating the basic
nested spawn structure and cut synthesis code. The
separation of cut synthesis from cut choice gave a
much better software reuse, and a better paradigm for
thinking about cut decisions.

 The library is publicly available under the GNU
General Public License and is a collection of
SuperCollider 2 [McCartney 1998] classes with help
files available from the author's web site quoted
above. This paper cannot possibly go into great detail
on every assumption and method of the library, but
should provide a technical introduction in
combination with the many help files and the
commented code itself.

To set this work in the context of algorithmic
composition research, let us borrow terms from
[Pierce 2001], a paper which attempts to use neural
nets to fashion some basic semiquaver resolution
drum and bass drum loops. Existing cut procedures
implemented in the library [Collins 2001b] are those
of an 'active style synthesiser' rather than an 'empirical
style modeller'. However, the library itself is neutral
as regards what algorithmic composition methodology
is utilised in cut procedures. It is a tool to assist
research and composition, and one could imagine an
implementation of a neural net trained on cut patterns
from drum and bass classics as a NeuralNetCutProc.

 There is little academic research on dance music or
electronica, which are fast evolving current styles
rather than 'dead' musics for dissection. Hence the
practical experimental approach of this work. It is not

enough to model early drum and bass without
allowing extrapolations of new techniques.

The sort of audio cutting assumed here is usually at
haptic or human rhythmic rates, with the obvious
capability to reach inhuman speeds. In the main then,
there is a macro level structural view rather than the
microrhythms of granularisation [see Roads 1996 pp
180-184 especially]. That there is some overlap with
granular techniques is evident though a very familiar
effect of current electronica (AphexTwin,
SquarePusher et al), that of using extremely fast
iterated repeats of a small chunk of source
(implemented in the BBCL's WarpCutProc). These
repetitions played at audio rate speeds translate to
specific pitches from a noisy wavetable. Further, set
at faster inhuman tempi any cut procedure begins to
lose its rhythmic sense and become more like textural
granularisation. Human perceptual limits for this are
around semiquavers at 250 bpm, see for instance the
table of discrimination of the ear in [Pierce 2001].

2. A SUMMARY OF CAPABILITIES

This section lists some features and philosophies of
the BBCut Library.

(i) Support for composers who wish to experiment
with their own automatic cutting algorithms.

(ii) Separation of effects and synthesis from the
algorithmic composition routine so as to allow any
audio source to be cut by any cut procedure.

(iii) Effects processing on cuts is responsive to the
hierarchical levels.

(iv) Everything works in realtime (this is
SuperCollider after all!). The code has been tested
over many months in live situations.

(v) SuperCollider is a very beautiful language;
functions are easily passed as arguments making

much more general algorithm control possible.
Scheduling in beats is masterminded by SuperCollider
and smoothly copes with tempo changes.

(vi) Multiple synced BBCutters can complement each
other very successfully in polyrhythmic patterns that
are still aware of bars and beats.

(vii) MultiProc and MultiBBCutSynth classes allow
the swapping of cut procedures and cut synthesis
while running.

(viii) Extendable, open ended: everything is a
SuperCollider class, derive your own classes to cover
novel requirements.

Currently supported cut synthesis classes include the
cutting of source soundfiles and other signal buffers
(allowing offset information throughout the source),
the cutting of a live stream like the current audio in
(where offset information is only applicable to past
events) and cut aware reverbs, envelopers, filters and
panners. Cut procedures exist based on syncopated
cuts, choosing a block or a cut at a time, using
changing weights and statistical feedback [Ames
1990] and algorithms investigating recursion and even
campanology [Collins 2001b]. There is also a simple
automatic offset detection algorithm included to aid in
dealing with human timing in beats and less regular
rhythms. The BBCutSynthSFAO class supports user
defined offset points (AO= Allowable Offset).
 The distribution necessarily includes a number of
auxiliary classes, including stream classes for Charles
Ames' method of statistical feedback and
campanology permutation chains.

3. PHRASES, BLOCKS AND CUTS

The BBCut Library helps to facilitate the process of
writing cut procedures separately from synthesis code,
but only within a restricted paradigm of phrase, block,
cut described in figure 1. Further levels of hierarchy
must be added by the user. The current levels have
been shown sufficient for the variety of cut procedure
experiments undertaken so far.
 The phrase is the top level of the hierarchy, and
corresponds in usual practice to a cut sequence lasting
a number of measures. A block is a collection of
repetitions of an atomic cut, at a common offset.

Phrase

Cuts

Block

Roll

Figure 1 The Cut Hierachy

For example, for cuts being synthesised from the
current audio in stream, a block might involve
recording whilst playing a small chunk of audio and

then repeating the stored buffer for as many instances
as make up the block.
 Cut procedures calculate on a per block basis, with a
nested spawn. The outer spawn calls to the cut
procedure to choose a new block. This choice then
informs a finite number of repetitions of a spawn
synthesising each cut. This master spawn structure is
programmed in the BBCut class as the *ar class
method. This pseudo code lists the main calls
required:

(spawn each block)

BBCutProc object - choosenewblock

This object may update the phrase if the last
phrase has terminated. If necessary, updatephrase
call to the BBCutSynth.

calls to inform and prepare BBCutSynth for a new block

(spawn carrying out the block)

BBCutSynth synthesises each cut in turn

The above intimately ties the BBCut, BBCutProc and
BBCutSynth classes. To provide new cut procedures
one derives from the BBCutProc class. To derive new
effects which are aware of the hierarchy, and can
update at phrase or block boundaries, or new methods
of input audio, derive from BBCutSynth. Some
intermediate classes are provided in the library to ease
this process, but the basic understanding of the system
can rest on these three classes.

4. WRITING A NEW BBCUTPROC CLASS

To demonstrate the Library in practical terms we shall
walk through creating a new cut procedure, the
ChooseBlockProc. This is a simplification of the
specialised WarpCutProc from the library. It is so
called because we shall literally choose the size of
each block as we go, and worry about how many cuts
for each block as a second stage. Appendix A
contains the SuperCollider code for the class as
reference.

The following is the bare code from the base class
BBCutProc for the essential chooseblock method:

this.newPhraseAccounting;

//each phrase has one block
blocklength=currphraselength; (*)
cuts=[blocklength]; (**)

bbcutsynth.chooseoffset(phrasepos, beatspersubdiv,
currphraselength);

this.updateblock;
this.endBlockAccounting;

Helper methods newPhraseAccounting and
endBlockAccounting are provided in the base class to
take work away. The call to updateblock is another
helper method wrapping the update call to the
attached BBCutSynth. The offsets are chosen by the
BBCutSynth using whatever method is appropriate-
there is no need for the cut procedure to know how
the BBCutSynth achieves this (there is facility for the
cut procedure to select this, but we will not need that).
The important central lines (*) and (**) work out the
cuts Array, whose individual durations sum to the
blocklength.
 All that one needs to do for an arbitrary new
chooseblock method is to generate the cuts Array in a
chosen manner.

For the ChooseBlockProc there are two arbitrary
auxiliary functions, (passed in as user parameters) the
first for selecting a blocklength, the second for
selecting the number of subdivisions (cuts) of that
block. So we must replace (*) above with

blocklength= blocksizefunc.value

and (**) by

numcuts= numcutsfunc.value
cuts= Array of numcuts elements, each of size
blocklength/numcuts

The Appendix code implements exactly this.
Figure 2 shows what the calls to the new procedure
look like in SuperCollider. BBCutSynthParam's
easysf method gives quick access to a typical
BBCutsSynth chain for audio sample cutting. Note
that any other BBCutSynth chain could be substituted
without ChooseBlockProc needing modification.

Figure 2 calls to the ChooseBlockProc class

5. THE BBCUTSYNTH

The BBCutSynth object used to synthesise cuts is in
actual fact a nested set of BBCutSynth derived
objects, with a method of obtaining audio at the
innermost layer. Calls to update on phrase or block
boundaries, and the synthesisecut method itself pass
through the linked list establishing and applying the
effects chain. It was considered whether to
differentiate an audio collecting class (for example for
the innermost layer, like BBCutSynthSF or
BBCutSynthAudioIn from the library) from an effects
class (like BBCutSynthParam, which does standard
enveloping) but this was avoided as adding extra

unnecessary complexity. There is a certain onus on
the creator of a synthesis chain to get a few
components in the right order, as regards source and
enveloping, but this is seen as a necessary evil when it
is considered that arbitrary effects can be established
by mix and matching BBCutSynth derived classes,
and all should work with any given BBCutProc.

6. CONCLUSIONS AND FUTURE WORK

In the establishing of a paradigm, restrictions are
born. There is no claim here to represent the sole
route to cutting up audio, just a methodology that has
proven successful for breakbeat cutting. The
composer who wishes to demand a close connection
between synthesis parameters and cutting parameters
may find it easier to program a very specific class
rather than work within this library's assumptions. It is
hoped that the situations that the library does cover
are broad enough to give it some appeal as a shortcut.

The feedback of users will inform further work on the
library. The invention of new cut procedures will
naturally suggest revisions and better organisation.

As an immediate example, the library could be
reworked to always generate [inter-onset duration,
event duration, cut offset] lists on calls to
chooseblock, converting blocks into a more general
intermediary in the hierarchy. Blocks could then
contain many different offset rolls for instance. This
author errs on the side of avoiding such complexity in
the current instance, assuming that overlaps are
typically constant or proportional to inter onset
duration. The block retains its same offset roll as the
basic factor.

In the context of future cut procedures the previous
paper gave a discussion of motifs as an additional
hierarchical layer. Some revision of the hierarchy may
inevitably lead to a BBCut Library 2.

Whilst the basic breakbeat cutter was adapted to
Csound in an opcode version, the work described here
is very much tied to the power of SuperCollider as an
audio programming language.

Perhaps in the future the author will turn their hands
to a Granular Cuts Library or similar, with much more
emphasis on grain overlap. For the time being, there
are a lot more algorithmic composition experiments
within the BBCut Library to attempt.

REFERENCES

Ames, Charles. (1990). Statistics and Compositional
Balance. Perspectives of New Music. 28:1.

Collins, Nick. (2001a). Algorithmic Composition Methods
for Breakbeat Science. Proceedings of Music Without
Walls, De Montfort University, June 21-23, 2001.

Collins, Nick. (2001b). Further Automatic Breakbeat
Cutting Methods, Proceedings of Generative Art, Milan
Politecnico, Dec 12-14, 2001.

McCartney, James (1998). Continued Evolution of the
SuperCollider Real Time Synthesis Environment.
Proceedings of the International Computer Music
Conference, Ann Arbor, Michigan, 1998.

Pearce, M. T. and Wiggins, G. A. (2001). Towards a
Framework for the Evaluation of Machine Compositions. In
Proceedings of the AISB'01 Symposium on Artificial
Intelligence and Creativity in the Arts and Sciences, (pp.22-
32). Brighton, UK: SSAISB.

Pierce, J. (2001). Hearing in Time and Space. in Cook, P.R.
(ed) (2001). Music, Cognition and Computerized Sound.
MIT Press.

Roads, C. (1996) The Computer Music Tutorial. MIT Press.

APPENDIX A- CHOOSEBLOCKPROC.SC

ChooseBlockProc : BBCutProc
{
var blocksizefunc,numcutfunc,probs,accel;

//variables persisting between spawns
var beatsleft;

*new
{
arg blocksizefunc, numcutfunc, phraselength=12.0,
bpsd=0.5;

^super.new(bpsd,phraselength).
initChooseBlockProc(blocksizefunc,numcutfunc);
}

initChooseBlockProc
{
arg bsf,ncf;

blocksizefunc=bsf ?
{
//the calling procedure will automatically correct the retruned
//value if the choice is longer then beatsleft
arg left,length; [0.5,1,2].wchoose([0.5,0.4,0.1]);
};

numcutfunc=ncf ? {arg size;
if(size<1.0,{[4,8,16].choose},
{[8,16,32].choose})};
}

chooseblock
{
var repeats,temp;

//new phrase to calculate?
if(phrasepos>=currphraselength,
{this.newPhraseAccounting;});

beatsleft= currphraselength - phrasepos;

//always new slice/roll to calculate
blocklength=blocksizefunc.value
(beatsleft, currphraselength);

//safety to force conformity to phrases
if(blocklength>beatsleft,{blocklength= beatsleft;});

repeats=numcutfunc.value(blocklength);
temp=blocklength/repeats;
cuts=Array.fill(repeats,{temp});

//correction for arithmetic errors
cuts.put(repeats-1,temp+(blocklength-(temp*repeats)));

//offsets are now decided by the cut renderer
bbcutsynth.chooseoffset(phrasepos,
beatspersubdiv,currphraselength);

this.updateblock;

this.endBlockAccounting;
}

}

