
Enumeration of Chord Sequences

Nick Collins
University of Sussex

N.Collins@sussex.ac.uk

ABSTRACT

The enumeration of musical objects has received height-
ened attention in the last twenty five years, and whilst such
phenomena as tone rows, polyphonic mosaics, and scales
have been explored, there has not been prior investiga-
tion of the enumeration of chord sequences. In part, ana-
lysts may have disregarded the situation as having a trivial
solution, namely the number of chord types at each step
raised to the power of the number of steps. However, there
are more subtle and interesting situations where there are
constraints, such as rotational and transpositional equiva-
lence of sequences. Enumeration of such chord sequences
is explored through the application of Burnside’s lemma
for counting equivalence classes under a group action, and
computer generation of lists of representative chord se-
quences outlined. Potential extensions to ‘McCartney’s
Chord Sequence Problem’ for the enumeration of cyclic
(looping) chord sequences are further discussed.

1. INTRODUCTION

From D. L . Reiner’s enumerations of set and row classes
[1] to Harald Fripertinger’s investigations of mosaics and
motifs [2], the application of combinatorial methods in mu-
sic theory has advanced considerably. An excellent re-
view article by Julian Hook [3] presents an introduction to
the use of such theoretical apparatus from combinatorics
as Burnside’s lemma, 1 and Pólya’s enumeration theorem;
the reader might also consult David Benson’s textbook on
music and mathematics [4], and from a more intensely
mathematical perspective, a concise survey by the combi-
natoricist R.C.Read [5].

This paper tackles the counting and generation of all chord
sequences meeting certain musical criteria. The motivation
for this work was a question raised, and partially answered,
by James McCartney in a post on the facebook social net-
working site. He was curious as to the number of possi-
ble 3 chord sequences, taking into account rotational and
transpositional equivalence, where the only chord types are
major and minor, and repetitions are excluded. He wrote
a program to enumerate the options by brute force [6].

1 With appropriate acknowledgement of the controversy over this at-
tribution, nodding to Cauchy and Frobenius.

Copyright: c©2012 Nick Collins et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

The Facebook post became a site of discussion, with re-
spondents quickly noting the applications in automatic pop
song generation. Chandrasekhar Ramakrishnan provided
an argument to enumerate the 3 chord case, based on look-
ing at successive intervals. Whilst this elucidates the situa-
tion for a small number of chords, it does not generalise so
well. This author posted a solution to the more general case
of a sequence of L chords from C types of chords within
an (equal tempered) pitch class universe of N pitches. This
paper expands upon this more general solution, and the is-
sues that arose in consideration of this problem.

Additional musical factors can complicate the picture, from
voice leading through to the details of timing in chord pre-
sentation (whether inter chord time interval or arpeggiation
delays within an individual chord). We shall assume herein
that chords are presented without respect to duration, that
is, as if the chord sequences are pure entities of interest
in themselves (which is a good approximation to much
typical usage in composition, especially where harmonic
rhythm is not especially varied, for example pop song con-
struction). In many cases below, the spread of chord notes
over multiple octaves can be abstracted away either by the
notion of a dictionary of chord types (which is taken to
include all possible voice configurations) or through pitch
class set reduction.

There is a basic and effective solution to enumerating
chord sequences, which is detailed here as a starting point.
This is to consider that order of presentation in time is
fundamental to practical revelation in music, so rotational
equivalence does not need to be invoked. Further, though
naive transpositional equivalence between chord sequences
may be necessary (absolute pitch is relatively rare), each
sequence is distinct up to no more than N possible trans-
positions within a given pitch space. 2 For a sequence of
length L, with C chord types available (each having N

non-equivalent transpositions) there are then (C∗N)L

N pos-
sible chord sequences. The rest of this paper looks at var-
ious ways in which this initial picture might be compli-
cated. The investigation is musically productive, reveal-
ing various interesting structures (such as auto-mapping
sequences) that may be inspiring to composers. A further
counter argument to to those who might restrict themselves
only to studying fixed sequences might highlight principles
of eternal cyclic return in many world musics, or minimal-
ist works. The categorisation under constraints on chord
repetition discovers some interesting chord sequence rep-

2 We ignore for now the existence of sequences of chords entirely made
from self-transposing chords such as diminished seventh, augmented or
whole tone types admitting less than the full N transpositions (what Mes-
siaen called ‘modes of limited transposition’).

mailto:N.Collins@sussex.ac.uk
http://creativecommons.org/licenses/by/3.0/

resentatives; rotations can always be trivially restored from
the discovered equivalence classes.

Previous work on chord sequences extends from encod-
ing and probabilistic modeling for music information re-
trieval [7, 8], through applications in algorithmic compo-
sition [9, 10] to more mathematical music theoretic ap-
proaches [11]. In the latter paper in particular, Clifton Cal-
lendar and colleagues [11] allude to chord sequence enu-
meration within the context of voice leading, based on their
geometric construction for n-note chords in an n-dimensional
space. However, their ‘individual equivalent’ spaces in
particular allow the association of any chord with any other,
and are too loose for our purposes, whereas for ‘uniform’
transformations (the same operation applied to all sequence
members), they do not consider rotation of sequences them-
selves within their OPTIC set of musical transformations
(since these transformations must apply to an individual
object of a sequence, but not act as permutations on a se-
quence).

On a mathematical note, the problems considered in this
paper overlap to some extent with the formulations for k-
sequences in combinatorial algorithms [12, p.226]. How-
ever, the rotation of chord sequences, and the existence of
more than one chord type, takes us away from considering
a k-sequence of integers. The set X is that of chord se-
quences themselves where each position in the sequence
has an associated tuple of transposition and chord type.
Although we shall see a useful encoding in section 3 that
drops back to a sequence of integers for the purposes of es-
tablishing an order relation, the tuple is still implicit. Simi-
larly, treatments of rows, even with rotational equivalence,
or ‘Stockhausen’s Problem’ of enumerating possible per-
formances for an open form work [5], do not match the
chord sequence problem as elucidated by James McCart-
ney, and we now proceed to tackle this problem directly.

2. EQUIVALENCE CLASSES OF CHORD
SEQUENCES UNDER TRANSPOSITION AND

ROTATION

Consider a set X of chord sequences of length L, within
an equal tempered pitch class space of size N (the N -scale
in Fripertinger’s notation [2]). The group of transpositions
on the space is ZN , whose entries are also the integers 0
to N -1 just like the pitch classes; in practice, this should
not cause confusion. Chords are taken from a fund of M
types, where the set M takes in all possible operational
modifications of chords, for example, the set of major and
minor chords at all transpositions (but without inversional
equivalence). In other cases, M might be much larger: for
instance, in the representation used by Absolu, Li and Ogi-
hara [8] where base chords can have various modifiers on
the 3rd, 5th, 6th/7th, 9th, 11th, 13th, and an additional bass
tone, the authors observe M = 331776 possibilities.

We want to enumerate all equivalence classes of chord
sequences under a group action, from a group generated
by primitive operations:

• rotation R: cyclic rotation of sequence by one step to
the right, wrapping around the last entry to the first

• transposition T : transposing all elements of the se-
quence by one step. T is the smallest transposition
step in ZN

Powers of the generators lead to rotation by an arbitrary
number of steps (up to RL as the identity) and transposi-
tion by an arbitrary amount up to TN as the identity. The
complete group G is co-generated by R and T (which are
commutative as operators on sequences, in that their action
is independent [13]) and is isomorphic to ZL∗ZN , a group
of order LN .

For now we exclude retrograde operations on chord se-
quences, which would otherwise lead to a product of a di-
hedral group and cyclic group. We shall, however, con-
sider the absence or inclusion of a number of additional
constraints on valid chord sequences, such as a restriction
that no chord is directly repeated. 3 .

In this context, a natural tool to employ is Burnside’s
lemma [2] [4, p.346], which states that we can count all
distinct orbits (equivalence classes) by looking at the aver-
age number of fixed points across all group members:

1
|G|

∑
g∈G

fix(g,X) (1)

where fix(g, X) is the number of elements of X left fixed
under application of the action of g.

Burnside’s lemma tells us to look for fixed points of the
group of (rotation, transposition) operators acting on the
set X of possible chord sequences. We must think about
the logic of possible sequences which map to themselves
under particular rotations and transpositions.

2.1 A motivating example

To explicate the general solution to be outlined in section
2.2, consider some specific cases first, based around three
chord sequences. The sequence
C1, C2, C3

maps to itself under rotation R iff C1 = C2 = C3. If we
have a further condition that repetition is not allowed in
sequences, then this case has already been excluded. Oth-
erwise, there are M possible sequences of this type (M
choices for the particular repeated chord). To map to it-
self under a single step transposition T , T (Ci) = Ci for
all i. If we assumed that the chords were already distinct,
this is not possible. Indeed, the only candidate chord other-
wise self-equivalent under simple T is the aggregate chord
of the complete chromatic pitch space (the complement of
the pathological empty chord), which is unlikely to be in-
cluded in more practical sequences, for example, of three
note major and minor chords in Z12! For the moment, we
will side step such cases of self-transposing chords as di-
minished sevenths or augmented.

The general operator case RaT b for some a, b is more in-
teresting, and key to the solution below. Here, chords in
the sequence are identified within particular subsequences,

3 In terms of varying harmonic rhythm, chords might very well be al-
lowed to repeat, for instance the twelve bar sequence of major chords C
C C C F F C C G F C C; if repetition is excluded, this sequence drops
down to C F C G F

determined by the relationship of a to L. For example,
for our three chord case, L = 3 is prime, so any a must
lead to an association across the complete sequence. How-
ever, for composite numbers L, there can be more sophisti-
cated subsequence behaviour. If L was 6 and a 2, then two
subsequences indexed 0,2,4 and 1,3,5 respectively would
be associated. The question is then whether the chain of
transpositions based on b can ‘fit’ within the length of the
derived subsequences. For example, for sequences of six
major chords in Z12, a = 2, b = 4 would be permissible,
leading to such fixed elements of X under R2T 4 as:

C, E[, E, G, A[, B
and many more, based on free choice of starting chords

up to additional constraints on repetition of successive chords
(see Figure 1). It is seen that the orbits of chords under
particular transpositions interact with the size of orbits of
a within ZL.

Figure 1. Six chord sequence Demonstrating two subse-
quences with R2T 4 equivalence.

2.2 General solution

We now state the general solution. The number of possible
looping chord sequences is:

∑
i,j s.t. condition(i,j)

summand(M,L, i, j)

NL

i = 0, . . . , N − 1 j = 0, . . . , L− 1 (2)

where condition(i, j) is that

i ∗ order(j) ≡ 0 mod N (3)

(order(j) being the order of j in the cyclic group of order
L, ZL). i and j try out all possible transpositions and rota-
tions; only a subset of these have any possibility of setting
up actual fixed points under the group operations. The case
i = 0, j = 0 of course is the case for fix(I, X) where I is
the identity operation (no rotation, no transposition).

The condition then states that there is ‘room’ for a se-
quence of transpositions to follow the orbit spiral of el-
ement j within ZL and end up exactly back where they
started, as motivated in section 2.1.

The summand depends on what variant of strictness we’re
using for consecutive chords, and expresses the amount of
freedom on substituting chord choices. Let the number of
orbits of j within ZL be denoted orbits(j) = L/order(j)

For a free choice:

summand(M,L, i, j) = Morbits(j) (4)

i.e., M to the power of the number of orbits of j in cyclic
group ZL.

For the cases disallowing consecutive repetition of the
same chord (of specific type and transposition), or between
any chord type sharing the same transposition level, things
get more complicated, but a recursive solution still exists.
Define Q as either 1, for disallowing consecutive chords of
the same type and transposition, or as the number of dis-
tinct chord types independent of transposition (for exam-
ple, when M = Q∗N). Then to count the number of fixed
elements given ‘space’ of n = orbits(j) orbits within ZL,
consider the recursions:

aM,Q(2) = M ∗ (M − 2Q)
aM,Q(3) = M ∗Q ∗ (M −Q) +

(M ∗ (M − 2Q) ∗ (M − 2Q))
aM,Q(n) = (M − 2Q) ∗ aM,Q(n− 1) +

Q ∗ (M −Q) ∗ aM,Q(n− 2) n ≥ 3
bM,Q(2) = M ∗ (M −Q)

bM,Q(3) = M ∗ (M −Q) ∗ (M − 2Q)
bM,Q(n) = (M − 2Q) ∗ bM,Q(n− 1) +

Q ∗ (M −Q) ∗ bM,Q(n− 2) n ≥ 3 (5)

where the final summand follows as:

summand(M, L, i, j) = 0
orbits(j) = 1, i = 0

summand(M, L, i, j) = M

orbits(j) = 1, i > 0
summand(M, L, i, j) = aM,Q(orbits(j))

orbits(j) > 1, i > 0
summand(M,L, i, j) = bM,Q(orbits(j))

orbits(j) > 1, i = 0 (6)

Figure 2 provides an illustration to accompany the justi-
fication for this formula. The motivation is that we have
n = orbits(j) slots to assign to, into which we can os-
tensibly substitute any of M chords. However, we must
restrict choices based on neighbouring chords to avoid cer-
tain forms of repetition. Rather than proceed assigning
chords from the start of the slots, we proceed in reverse and
seek a recursion that expresses the solution for n in terms
of the solution for smaller numbers of slots. Note that the
recursive formulas for aM,Q(n) and bM,Q(n) are the same,
but with different initial conditions; we shall resolve this
below, though the first part of the argument concerning the
recursion itself works in both cases.

The slots are labelled in the diagram as C1, C2, . . . , Cn−1, Cn

and an additional element of Cn+1 representing the next
element in the subsequence orbit from C1 (i.e., T iC1), or
wraparound back to C1. In practice, which is the case does

not matter to the argument. It is sufficient to consider that
the number of choices for Cn depend on the occupancy of
the slots next door. We have to deal with two cases.

Figure 2. Chord choice recursion construction Consid-
ering chord choice across orbits

In the first, Cn−1 = Cn+1. Here, there are Q choices for
Cn−1, in that it must match transposition and chord type or
just the transposition of Cn−1 (this is the definition of Q).
But since the two adjacent elements are from the same Q
options, there are M − Q choices left for Cn, and having
selected both Cn−1 and Cn, we can proceed to consider
the slot at n−2, providing the Q∗ (M −Q)∗aM,Q(n−2)
term in the recursion.

In the second case, Cn−1 6= Cn+1. Now for Cn there
are M − 2Q options. We have not fixed slot n− 1, and we
already know it must not be equal to slot n, so the recursion
is now to consider this element n − 1, and the term in the
recursion here is (M−2Q)∗aM,Q(n−1). This completes
the proof of the recursion itself.

We do have to take account of some different initial con-
ditions; a corresponds to the situation where C1 6= Cn+1,
and b to C1 = Cn+1. The reader should be able to repro-
duce the formulas by consideration of the base cases for a
small number of slots. For example, for the most compli-
cated, aM,Q(3), C1 6= C4 (C4 is in the same orbit as C1 but
is at a new transposition level, since i > 0). The two terms
in the sum come from two cases; first, if C2 = C4 there are
M choices for the first slot, Q for the second (since it must
equal in transposition at least that of the wrap element at
the fourth), and since either side of C3 is at one transposi-
tion level, M −Q choices for the third. The other term in
the sum follows analogously as M for the first, M−2Q for
the second (not equal to first or fourth) and then the third is
not equal to the second or third, allowing M − 2Q options
again. 4

4 The reader should hopefully be convinced already. But the author
arrived at this result via a more complicated pair of joint recursions for
situations where the n + 1th element was equal to C0 or different; it
eventually turned out that the simpler recursion presented here could be
derived, though the distinction lives in the initial conditions.

aM,Q(n) = Q ∗ bM,Q(n− 1) + (M − 2Q) ∗ aM,Q(n− 1)

n ≥ 3

bM,Q(n) = Q ∗ (M −Q) ∗ bM,Q(n− 2) +

(M − 2Q) ∗ (M −Q) ∗ aM,Q(n− 2)

n ≥ 4

aM,Q(2) = M ∗ (M − 2Q)

We assumed in the above derivation that there were no
self-transposing chords. Self-transposing chords have more
than a single orbit when acted upon by ZN , so they re-
peat for some transposition less than N . For example,
a diminished seventh chord within 12TET repeats within
a three semitone transposition (there are three orbits), an
augmented chord within four. This leads to non-empty
fixed sets for transpositions without rotation, as long as
only appropriate self-transposing chords are selected in the
sequence; the presence of any non-self-transposing chord
breaks the spell. It also allows for additional fixed se-
quences under rotation and transposition. Though M may
be correspondingly reduced to start with, and some of the
argumentation above remains valid (only taking up to 2Q
off M in the recursion may seem to cover us up to self
transposing chords with at least two distinct forms), the sit-
uation is complicated especially when including a number
of different self-transposing chords. No analytical solution
has yet been perfected here.

2.3 Worked examples

For the problem originally proposed by James McCartney,
L = 3, N = 12, and M = 24 (major and minor chords
over N = 12 transpositions). The overall group size is
NL = 12 ∗ 3 = 36

To find orbits within which successive transpositions fit,
we need all pairs (i, j) such that i ∗ order(j) ≡ 0 mod
12 where i = 0, . . . , 11 j = 0, 1, 2. The orders of j
within Z3 are 1,3 and 3 respectively, so the corresponding
numbers of orbits are 3, 1 and 1. Solutions for i solving
the modulo congruence are i = 0 for j = 0, i = 0, 4, 8 for
j = 1, i = 0, 4, 8 for j = 2. These values of i and j can be
related to the generators R and T for the group acting on
the set of chord sequences as the identity I , R, RT 4, RT 8,
R2, R2T 4 and R2T 8.

From this point, the different constraints on consecutive
chords come into play. For free choice, we get 243 se-
quences fixed by the identity, and a contribution of 6 ∗ 24
for the other six orbits of size 1. The whole summation
is divided by the overall group size of 36, to get 388 dis-
tinct chord sequences. For no consecutive chords at the
same transposition level, we get 24 ∗ 23 ∗ 22 + 4 ∗ 24 all
divided by 36 is 340 (the two cases where the number of
orbits is 1 and i = 0 end up contributing zero to the sum-
mation, since they have ‘no space’ to put chords all at the
same transposition level; there is only one orbit). For no
consecutive chords of any type at the same transposition,
we have 24 ∗ 22 ∗ 20 + 4 ∗ 24 all divided by 36 is 296
chord sequences. Note that in this case, simpler reason-
ing than above can deal with the counts, since the length
is only three; lengths greater than three require the more
complicated formulas above.

To now work an example for an alternative musical space,
let us consider 6 chord sequences in the diatonic space of 7
notes, as per Clough’s discussion of diatonic sets [14]. The

bM,Q(2) = M ∗ (M −Q)

bM,Q(3) = M ∗ (M −Q) ∗ (M − 2Q) (7)

three non-congruent chord types will be the triad indexed
[0,2,4], the ‘suspended second’ indexed [0,1,4] and the dia-
tonic cluster [0,1,2]. We want to find the number of distinct
chord sequences where there is no repetition of transposi-
tion level regardless of type, L = 6, N = 7, M = 21, Q =
3. The orders of j=0,1,2,3,4,5 within Z6 are 1,6,3,2,3,6
respectively, so the corresponding numbers of orbits are
6,1,2,3,2,1. Solutions for i solving the modulo congruence
are only i = 0 for each j (7 is prime). The overall summa-
tion works out then depending on the size of orbits and the
formulas above as (2 ∗ b21,3(6))+ b21,3(3)+ (2 ∗ b21,3(2))
since the orbits of size 1 at transposition 0 contribute no
valid sequences. Using the recursions to solve this, there
are 810072 distinct chord sequences in this scenario.

An example which is very hard to enumerate exhaustively
by computational search is L = 50, N = 19, M = 57
(three chord types, C = 3, Q = 3). Brute force enu-
meration would hunt through 5750 cases, more than the
number of atoms in the observable universe. We can still
count the number of musical objects even if running a pro-
gram to generate them exhaustively would take too long;
we reduce the hunt to looking at all pairs (i, j) where i =
0, . . . , 18 j = 0, . . . , 49 and working out the appropri-
ate summand, if valid. Calculating the summands takes us
well out of the range of 64-bit long integers, so we need
to use a special maths library. Python was used to run this
particular calculation, as well as check others above, since
it natively supports integers of arbitrary size. The answer
isn’t small:

438494737719887413398130512078099761413309
435496154668961729757520348645372634586590
distinct chord sequence equivalence classes, around 1/746th

of the 5750/19 raw possibilities. 5

3. COMPUTATIONAL GENERATION OF CHORD
SEQUENCE EQUIVALENCE CLASSES

Whilst we have so far exhibited a general formula to count
chord sequences under rotational and transpositional equiv-
alence, we have not exhibited lists of representatives for
each orbit. There is a natural encoding for sequences, which
can be used to select a representative for an orbit as the
sequence with minimal code. Let the chord at transposi-
tion level k (k ∈ 0, . . . , N − 1) and chord type q (q ∈
0, . . . , Q − 1 for Q distinct chord types) be given a sin-
gle number k ∗ Q + q ∈ 0, . . . ,M − 1 rather than an or-
dered pair. The sequence encoding is to take the ordered
sequence of these L numbers each from 0 to M − 1, and
convert it to a Big Endian (most significant digit first) num-
ber in base M . That is, the first element of the sequence is
the most significant digit:

code([x1, x2, . . . , xL]) =
L∑

i=1

xiM
L−i (8)

Brute force enumeration can then be programmed by try-
ing all possible assignments of numbers to sequences (ML

5 If we allow C = Q = 10000, imagining a more involved set of
chord types, the result has 260 decimal digits, and is around 10177 times
larger!

possibilities), generating for each the orbit, and keeping
those sequences which have minimal code within their or-
bit. Each code is unique, so the representatives will only
turn up once.

In practice, we only need to consider sequences which
have their first chord at transposition level 0, since this is
a necessary condition for the minimal code representative
(we can always transpose any given chord sequence to one
which has a first chord at transposition 0). Note that as
a consequence of our encoding, representatives containing
earlier chord types (by the arbitrary numbering) will tend
to be selected more often; the last chord type will only ap-
pear in the first slot for a representative if all chords in the
sequence are of that type (for otherwise, rotate till another
chord type is in the first slot, transpose to 0, and note this
gives a lower code).

The restriction of the first element to one of Q rather than
M numbers also enables a speed up in calculation by early
return from testing members of an orbit. For each possible
rotation of j chords, we check the (L− j)th element in the
sequence. There is only one transposition i which will take
it to transposition 0. Compare the chord type to that of the
code to test at the first chord position. The candidate’s first
element must have a lower or equal code to survive as a
candidate. Continue checking all other comparable entries
(the transposition now being known), and then repeat the
procedure for all possible rotations from 1 to L − 1. At
most (L − 1) ∗ L numbers will be compared, as opposed
to L ∗ L ∗ M for the complete set of transpositions and
rotations.

A better algorithm for generation has not yet been discov-
ered. Although the author spent some time trying to apply
R. C. Read’s method of orderly generation [15], no encod-
ing has been found to meet the more stringent criteria for
an orderly algorithm; essentially, the tuples of transposi-
tion and chord type and the ‘natural’ single number encod-
ing breaks Read’s conditions. 6

The number of orbits found empirically via the computer
program matches the test cases described in section 2.3
(but for the 50 chord sequence example designed to be too
difficult for brute enumeration). It is conceivable to adapt
the program for situations with self-transposing chords;
though additional transpositions must be checked, we can
reduce the size of M to begin with to hunt through less
possibilities. In general, this would require for each chord
type an associated size of orbit under transposition. Al-
though the coding may still utilise single numbers, with
posthoc reductions when interpreting codes into chord se-
quences, it would probably prove more beneficial to deal
with arrays of integers directly here.

4. CONCLUSIONS

We have investigated the enumeration of chord sequences
under equivalences of transposition and sequence rotation,
finding a solution for the counting of such sequences when

6 With respect to Read’s variable q in the general problem [15, p. 112],
this seems so both for working recursively from the sum to q over ele-
ments of the sequence and from q taken as the length of sequences, with
augmentation by extension of sequence length.

there are no self-transposing chords, and considered the
practical generation of lists of representatives. Aside from
mathematical interest, and conceptual music theory, there
is a real application in the generation of such sequences for
algorithmic music.

Lest we lose sight of musical realities in mathematics,
consider a situation which is perhaps closer to traditional
musical practice. You are at a particular chord in an ongo-
ing sequence, and must choose the next chord. Depending
on stylistic convention, there is a limited set of available
choices in the context. For instance, for Western common
practice music, the context might be a dependency on the
current key and recent chords, and we might consider a
probability distribution over next chord options. Given an
A minor chord in the key of C, there will be various stan-
dard following chords remaining within the key of C, as
well as options setting up local or longer term modulations
to the relative minor, G major, F major and more. The
history of Western music sees a gradual increase in the
freedom of modulation. This suggests an examination of
more local conditions on selection of chords, which leads
to an enumeration problem which is perhaps best explored
by computer. However, analogously to the current solution
for counting, a recursive solution might be pursued based
on decisions with a remaining sequence length of L lead-
ing to decisions of length L− 1.

Other extensions to the chord sequence problem consid-
ered in this paper could involve:

• Further consideration of the issues of self-transposing
chords.

• Further equivalence of sequences under the retro-
grade operation (expanding out to ZL ∗ D2N , the
product of a cyclic group and a dihedral group).

• Modifications for non-equal-tempered pitch class spaces
where transpositional equivalence is less straight for-
ward, or only operates for certain subsets. The trans-
position operation under such conditions may not
lead to a valid group and group action.

• The combination of durations with chords (see for
instance [8])

In terms of mathematical music theory, the considera-
tion of McCartney’s Chord Sequence Problem has been
productive, and much potential remains for future work.
Python code for counting equivalence classes, and C++
code for generation of lists of sequence representatives (for
relatively small L) is made available to accompany this
paper, and can be obtained from the author’s web pages
http://www.sussex.ac.uk/Users/nc81/code/
chordenumeration.zip.

Acknowledgments

A huge thankyou to James McCartney for raising the chal-
lenging topic of chord sequence enumeration in the first
place.

5. REFERENCES

[1] D. Reiner, “Enumeration in music theory,” Amer. Math.
Monthly, vol. 92, no. 1, pp. 51–54, 1985.

[2] H. Fripertinger, “Enumeration and construction in mu-
sic theory,” in Diderot Forum on Mathematics and Mu-
sic, Vienna, 1999, pp. 170–203.

[3] J. Hook, “Why are there twenty-nine tetrachords? a tu-
torial on combinatorics and enumeration in music the-
ory,” Music Theory Online, vol. 13, no. 4, 2007.

[4] D. J. Benson, Music: A Mathematical Offering.
Cambridge: Cambridge University Press, 2004.
[Online]. Available: http://www.maths.abdn.ac.uk/
∼bensondj/html/maths-music.html

[5] R. C. Read, “Combinatorial problems in the theory of
music,” Discrete Mathematics, vol. 167/168, pp. 543–
551, 1997.

[6] J. McCartney, “Number of unique 3 chord cyclic
progressions,” 2010. Facebook (login required). [On-
line]. Available: https://www.facebook.com/note.php?
note id=141375232545583

[7] J.-F. Paiement, D. Eck, and S. Bengio, “A probabilistic
model for chord progressions,” in International Sympo-
sium on Music Information Retrieval, 2005, pp. 312–
319.

[8] B. Absolu, T. Li, and M. Ogihara, “Analysis of chord
progression data,” in Advances in Music Information
Retrieval, Z. W. Raś and A. A. Wieczorkowska, Eds.
Berlin: Springer-Verlag, 2010, pp. 165–184.

[9] C. Ames, “The markov process as a compositional
model: A survey and tutorial,” Leonardo, vol. 22, no. 2,
pp. 175–187, 1989.

[10] G. Nierhaus, Algorithmic Composition: Paradigms
of Automated Music Generation. New York, NY:
Springer-Verlag/Wien, 2009.

[11] C. Callender, I. Quinn, and D. Tymoczko, “General-
ized voice-leading spaces,” Science, vol. 320, no. 5874,
pp. 346–348, 2008.

[12] D. L. Kreher and D. R. Stinson, Combinatorial Algo-
rithms: Generation, Enumeration and Search. Boca
Raton, FL: CRC Press, 1999.

[13] R. D. Morris, Composition with Pitch Classes. New
Haven, CT: Yale University Press, 1987.

[14] J. Clough, “Aspects of diatonic sets,” Journal of Music
Theory, vol. 23, no. 1, pp. 45–61, 1979.

[15] R. C. Read, “Every one a winner or how to avoid iso-
morphism search when cataloguing combinatorial con-
figurations,” Annals of Discrete Mathematics, vol. 2,
pp. 107–20, 1978.

http://www.sussex.ac.uk/Users/nc81/code/chordenumeration.zip
http://www.sussex.ac.uk/Users/nc81/code/chordenumeration.zip
http://www.maths.abdn.ac.uk/~bensondj/html/maths-music.html
http://www.maths.abdn.ac.uk/~bensondj/html/maths-music.html
https://www.facebook.com/note.php?note_id=141375232545583
https://www.facebook.com/note.php?note_id=141375232545583

	 1. Introduction
	 2. Equivalence classes of chord sequences under transposition and rotation
	2.1 A motivating example
	2.2 General solution
	2.3 Worked examples

	 3. Computational generation of chord sequence equivalence classes
	 4. Conclusions
	 5. References

