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ABSTRACT

Whilst many onset detection algorithms for musical events in audio signals have been proposed,
comparative studies of their efficacy for segmentation tasks are much rarer. This paper follows the
lead of Bello et al. 04, using the same hand marked test database as a benchmark for comparison.
That previous paper did not include in the comparison a psychoacoustically motivated algorithm
originally proposed by Klapuri in 1999, an oversight which is corrected herein with respect to a
number of variants of that model. Primary test domains are formed of non-pitched percussive
(NPP) and pitched non-percussive (PNP) sound events. 16 detection functions are investigated,
including a number of novel and recently published models. Different detection functions are seen
to perform well in each case, with substantially worse onset detection overall for the PNP case. It is
contended that the NPP case is effectively solved by fast intensity change discrimination processes,
but that stable pitch cues may provide a better tactic for the latter.
Keywords: Onset Detection, Detection Functions, Peak Picking, Audio Analysis
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1. INTRODUCTION

With many possible algorithms for the detec-
tion of musical events in an audio signal now
published[1, 10, 15, 12] , research questions are
turning to the comparative evaluation of such
methods[14, 4, 1]. This article seeks to ex-
tend the results and review of Bello et al.[1]
to explore the potential of psychoacoustically
motivated models such as those of Klapuri[12]
and Jehan[9]. These onset detection meth-
ods can be related to psychoacoustic models of
loudness[21, 17, 20, 18].

An issue immediately arises as to the applica-
tion area. For some applications it may be de-
sirous to seek a close correspondence with the
decisions of an experienced human auditor at
a concert as music unfolds. This would be the
appropriate case for a perceptually motivated
segmentation geared to the event classifications
of a musical idiom, for computer assisted im-
provisation with sensitive audio processing. On
the other hand, there are applications where
the aim is that of reverse engineering, from a
given audio signal, all distinct sound producing
events. In this situation, the resolution of a hu-
man listener’s segmentation of events could po-
tentially be exceeded by a computer algorithm,
for instance, in marking all strikes of a snare
roll. For such cases, it would seem most ap-
propriate to take the benchmark as being the
non real-time mark-up of segments in an audio
editor program, by a human expert[1]. For eval-
uation, this can be made a known quantity in a
generative procedure for producing test audio;
Duxbury et al.[4] utilise MIDI piano renders,
where the exact onset time is known.

Subjectivity is a factor in the former situation,
for multiple interpretations (possibly as a re-
sult of attentional mechanisms) are available to
human auditors. This should not provide too
much controversy though for monophonic sig-
nals where any overlap (due to decaying res-
onation of an instrument body or reverberation,
for instance) is negligible compared to the signal
power of a new event.

The physical onset of a sound is separated from
the perceptual onset[6]. Especially for slow
attacks on stringed instruments, the start of
sound output does not necessarily match the
moment our attention registers an attack. Such
effects may be related to processes of temporal
integration in the auditory system[5]. This issue
will be avoided herein by considering the phys-
ical onset alone as the target. Reaction time to
that onset may vary between algorithms, and
the nature of a signal will, of course, provide an
important factor for consideration.

The case of polyphonic audio is more con-
tentious yet, for here there are competing
streams: some events may be promoted at
the expense of others. Potentially, there is a
stronger subjective element in the choice of im-
portant events amongst the more substantially
overlapping aggregate. For this reason, com-
plex audio mixes are not considered in this ar-
ticle. In practical applications the onset de-
tection algorithms discussed below may be ap-
plied with the proviso that they may not deal
comfortably with near simultaneous events with
distinct spectral signatures. A simple solution
might see onset detectors restricted to certain
filter bands.

Onset detection algorithms are frequently split
into two components: the detection function,
a signal representing the changing state of
a musical signal, typically at a lower sam-
pling rate, and a second stage of peak pick-
ing within the detection function to find onset
times[1]. There may be detection functions at
multiple frequency bands and at multiple rates
which are recombined in some special way in
peak picking[12, 4]. Those detection functions
treated In this article are separable in a straight
forward way from the final peak picking stage.
In the comparison experiments, following the
lead of the initial study of Bello et al. [1], the
different detection functions are computed, with
onsets output from an adaptive peak picking
stage common to all functions.

To set the scene for the experiments the next
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few sections will introduce some of the detec-
tion functions to be compared (section 2), and
in particular models of onset detection inspired
by psychoacoustics (section 2.1). A novel detec-
tion function following the essential idea of Kla-
puri is outlined in more detail in 2.2, before peak
pickers are briefly mentioned in 2.3. The evalu-
ation strategy for onset detection algorithms is
discussed in 3; the comparison experiments fol-
low. As a result of the qualifications about poly-
phonic audio above, the initial experiment (sec-
tion 4) shall deal with the least contentious case
of non-pitched percussive (NPP) events, linking
this to the results of Bello et al.[1]. A second
experiment (section 5) considers pitched non-
percussive (PNP) events. Both experiments are
discussed in terms of the successful detection
functions and possible explanations for their
success. The paper is completed by a summary
including a brief mention of possible application
areas.

2. ONSET DETECTION METHODS

It is helpful to define a few of the detection func-
tions that will be encountered. The detection
functions in this paper can almost all be ex-
pressed as causal operations on FFT bin values.
|Xn(k)| is the magnitude of the kth bin for the
nth frame of spectral data.

The Queen Mary University of London (QMUL
henceforth) signal processing group have pro-
posed a number of onset detection methods[1, 3]
which are defined clearly in their papers and are
used without alteration from their original defi-
nitions herein. QMUL researchers kindly made
their code available for testing purposes. This
paper treats the phase deviation, being a mea-
sure of instantaneous frequency agreement over
frames, a more general complex domain onset
detection method which acts on the complex
numbers rather than just the phases, and the
spectral difference, an energy comparison over
successive FFT frames.

Other author’s detection functions have been

reimplemented for this work and this sec-
tion makes explicit which definitions have been
taken. Masri and Bateman[16] define the high
frequency content (HFC) as a weighted sum of
spectral powers:

HFC(n) =
k=N/2∑

k=2

|Xn(k)|2k (1)

and calculate a detection function from consid-
ering a ratio of the HFC over consecutive frames
(where the denominator is a minimum of 1).

DF (n) =
HFC(n)

HFC(n − 1)
HFC(n)∑k=N/2+1

k=2 |Xn(k)|2
(2)

Jensen and Andersen[11] rewrite equation (1)
with a squared weighting and sum over magni-
tudes, not powers.

HFC2(n) =
k=N/2∑

k=1

|Xn(k)|k2 (3)

They take the (linear) first order difference to
form the detection function:

DF (n) = HFC2(n) − HFC2(n − 1) (4)

Many variants are possible that utilise various
exponents and combine the bands before or af-
ter taking differences or ratios over frames.

2.1. Psychoacoustically Motivated Models

Anssi Klapuri[12] propounds the difference of
the log spectral power in bands as a more psy-
choacoustically relevant feature related to the
discrimination of intensity. This relative dif-
ference function can be viewed as an approxi-
mate differential of loudness (ignoring spectral
and temporal masking effects on the excita-
tion summands). Klapuri originally proposed
an onset detection model combining detection
in multiple bands where the salience of onsets
is rated by a loudness summation based on the
Moore, Glasberg and Baer loudness model[17].
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His most recent onset detection scheme gen-
eralises the logarithmic compression, using the
same analysis frontend as a recent beat induc-
tion model[13]. Because spectral change is the
target quantity, negative differences are ignored.
Steven Hainsworth has presented an equivalent
formulation in the context of spotting harmonic
content change, using a 4096 point FFT with a
restriction of contributing bands to those in the
range 30Hz-5kHz[7].

dn(k) = log2(
|Xn(k)|
|Xn−1(k)|

) (5)

DF (n) =
β∑

k=α

max(dn(k), 0) (6)

where α and β define lower and upper limits for
a particular subset of bands.

Further schemes in this vein may take advan-
tage of existing psychoacoustic models of loud-
ness of greater complexity[21, 17]. The detec-
tion function may be formed from the direct
output of a loudness model, or a first order dif-
ference of one to enhance change detection. A
paper by Timoney et al. [20] describes imple-
mentations of various psychoacoustic loudness
models in MATLAB.

Tristan Jehan[9] forms an event detection func-
tion by taking power in Bark bands and ap-
plying a spectral masking correction based on
spreading functions familiar from the percep-
tual coding of audio[18], and post masking with
half cosine convolution. His applications are in
event sensitive segmentation.

Jensen [10] has suggested a detection function
inspired from the speech recognition literature
which he names the perceptual spectral flux. He
rates this above his earlier high frequency con-
tent derived model (equation (3)).

PSF (n) =
k=N/2∑

k=1

W
(
|Xn(k)|3 − |Xn−1(k)|3

)
(7)

In implementation, the top 100 phon equal
loudness contour from [8] weights the different
bands.

This author has experimented with the weight-
ing of powers in ERB scale bands using equal
loudness contours. Detection functions are cre-
ated by the first order difference of the summa-
tion of intensities as an approximation of rate
of change of loudness, or by a sum of changes
similar to equation (6). As an example of how
such a feature is engineered in practise, this par-
ticular model is described in detail in the next
section.

In terms of the two roles for onset detection
mentioned in the introduction, whilst percep-
tual models may abet musical event detection
in the manner of a human observer, they may
not necessarily give the best solution to match
the discovery of transient sound events. How-
ever, comparison of such detection functions to
others put forward in the literature may provide
some interesting results.

2.2. A Detection Function Based on Equal
Loudness Contours

For 44100 KHz sampling rate audio at 16 bit
resolution, a 1024 point FFT with hop size of
512 and Hanning window is taken.

Calibration is a critical issue. As Painter and
Spanias suggest[18, page 455], the reference
level for the decibel scale can be taken as 1 bit
of amplitude. This reference is of course a con-
venience, since both the pre-recording and play-
back level of the music are unknown. The equal
loudness correction to powers described here is
in some sense artificial since the level of the orig-
inal acoustic stimulus should determine how the
contours are applied, and the dynamic range of
16 bit audio is around 90dB, 30dB less than that
of human hearing, and 10 dB less than the con-
tour data set. The fit to the 2-100dB contour
area must be determined. I choose to place the
1bit level at 15dB, so that the 90dB dynamic
range of the audio is spread over the contours’
range.
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For 15dB at 1 bit amplitude 1/215, a multiplier
ζ is obtained by:

15 = 20 log10

(
1

215
∗ ζ

)
(8)

ζ = 1015/20 ∗ 215 = 184268 (9)

. The bins of the FFT can then be converted to
decibels with the following formulation:

Bn(k) = 20 log10 (ζ ∗ |Xn(k)|) (10)

Corrections to these decibel levels are calculated
using equal loudness contour data; the author’s
implementation uses ISO226:2003[8]. Linear in-
terpolation is applied where bin values fall be-
tween the contours in decibels SPL or centre
frequency. Any values outside the 2 and 100dB
phon curves are clamped to these curves, an as-
sumption of below minimum field and satura-
tion of excitation respectively. To make process-
ing more efficient, FFT bins are combined (pow-
ers averaged) according to an ERB scale before
the logarithmic decibel transform and contour
correction. 40 ERB scale bands are used, from
the formula in [17] where F is frequency in kHz:

numberofERBs = 21.4 log10(4.37F + 1) (11)

For a spectral difference function the sum of dif-
ferences, as in the Klapuri/Hainsworth formula
above, can be taken in a generalised form:

Dn(k) = Cn(k) −
∑M

m=1 Cn−m(k)
M

(12)

DF (n) =
40∑

k=1

max(Dn(k), 0) (13)

Where the generalisation via parameter M pro-
motes smoothing in the calculation. Of course,
M=1 is equivalent to the earlier formula. Cn(k)
refers to the kth contour corrected ERB scale
band signal at time n.

Alternatively, a loudness like summation can be
followed and the signal L(n) or its first order
difference forms the detection function:

L(n) = 10 log10

(
40∑

k=1

100.1Cn(k)

)
(14)

Fig. 1: Detection function (13) for M=3 com-
pared to a recent Klapuri model

DF (n) = L(n) − L(n − 1) (15)

It is understood that the ISO data is gath-
ered from experiments with continuous sinu-
soidal tones, and that the extension to complex
sounds involves some difficulties. Nevertheless,
this method provides an approximate and effi-
cient correction for loudness for human hearing.

Figure 1 shows the detection function given by
equation (13) for M=3, in comparison with the
Klapuri onset detection function from [13], act-
ing on a drum loop signal. The top subplot
shows the original sample waveform with the
hand marked onsets under the midline, those
peak picked from the equal loudness contour
detection function on the top and the Klapuri
function results inbetween. The sharp definition
of the former detection function when compared
with the slower integrative process of Klapuri’s
beat induction frontend is apparent.

2.3. Peak Picking

Various detection functions have been described
above but the second stage of peak picking re-
mains open. Klapuri has utilised fixed thresh-
olds as a first approximation, but some alter-
natives have been published including an adap-
tive threshold peak picker[1] and a formulation
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based on a running cumulative average dubbed
the note average energy[15].

QMUL’s adaptive peak picker[1, IV] is taken as
the common peak picking stage in comparing
detection functions below. Detection function
signals are normalised and low pass filtered. A
median filter calculates the adaptive threshold
at any centre point n over points n−8 to n+7.
A single parameter δ sets the requisite detec-
tion level to register an onset for the adaptively
corrected detection function. In the compari-
son tests, δ was varied between -0.1 and 0.53 in
steps of 0.01 to find the best performing peak
picker setting.

3. EVALUATION

In the comparison of detection functions pre-
sented by Bello and colleagues[1] the test set
is a database of mono 44.1KHz 16 bit sound-
files, with reference onsets marked up by hand
by a single expert. This database is sepa-
rated into categories of non-pitched percussive
(NPP), pitched percussive (PP), pitched non-
percussive (PNP) and complex mixture (MIX).
For the purposes of a fair comparison, a com-
mon peak picker is used across detection func-
tions, being an adaptive threshold picker based
on a median filter as described in their paper.
A spread of results are obtained for different
values of the delta threshold parameter for the
peak picker, which are plotted on a graph of
percentage onsets detected against percentage
of false positive detections as a Receiver Oper-
ating Characteristics curve.

In practise, their comparison allowed different
filtering coefficients in the peak picker for dif-
ferent detection functions. An algorithm gen-
erated onset which fell within a lenient 50mS
either side of a reference onset was allowed as a
match.

Leveau et al[14] showed that the annotation
task involves some variability in decisions be-
tween human experts, particularly for complex
polyphonic music and instruments with slow

attacks. They provide some MATLAB based
annotation software and a small test set of
their own which has been marked up by three
users of their software, with ambiguous on-
sets removed (http://www.lam.jussieu.fr/
src/Membres/Leveau/SOL/SOL.htm). Unfor-
tunately, their data files did not work within
my version of MATLAB, and their database just
had five soundfiles for the PNP case. They do
not provide any NPP soundfiles however, on the
grounds that such soundfiles are reliably and
consistently marked up; they recommend that
testing with a 20mS leeway either side is appro-
priate for such a case.

Evaluations herein are undertaken for the NPP
and PNP cases using the QMUL database of
soundfiles, with a 25mS tolerance for the NPP
case and 50mS for the PNP. These test sets and
some MATLAB code for their detection func-
tions and peak picker were kindly provided by
the QMUL group, and allows a discussion in
relation to results in their earlier paper[1]. Be-
cause the QMUL database contains on the or-
der of 106 soundfiles in the NPP category, cor-
responding to 3094 onsets, it was decided to
run the comparison on this larger test set. The
original review paper used only 212 onsets to
evaluate detections in the non-pitched percus-
sive group. Dependency on any one soundfile is
thereby much reduced, increasing confidence in
the generality of results. It is difficult, however,
for any detection function to score as highly as
in the more reduced original study. For the
PNP case, 18 soundfiles with 446 onsets formed
the test set (containing examples of solo string
and vocal lines), where the original review just
tested over 93 onsets.

A measure of Correct Detection Ratio (CDR)
was proposed in [15] to score results, and is de-
scribed by the equation:

CDR =
total − missing − spurious

total
∗ 100%

(16)
This is not constrained, however, to return
values between 0-100. An evaluation for-
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mula from[2], originally used for the assessment
of beat tracking algorithm performance, gave
an alternative scoring mechanism, combining
matches m, false positives F+ (spurious) and
false negatives F− (missing).

score =
m

m + F− + F+
∗ 100% (17)

Note that the denominator includes the term for
the number of onsets in the trial n as m + F−.

There are many published models of onset de-
tection, and variants are easy to devise, includ-
ing weighted sums of functions, and whether to
take first order derivatives. There are also free
parameters in some models that could poten-
tially be optimised. This paper can only hope
to explore a representative set, the specific em-
phasis being on psychoacoustically motivated
detection functions.

It is acknowledged that the comparisons rely
upon the implementation of algorithms from
technical papers, which may or may not be
entirely true to the original author’s imple-
mentations, particularly if those author’s have
tweaked software to their own specific test
databases. I have tried to remain as faithful
as possible to the papers but cannot guarantee
an absolutely fair comparison. The experiments
do establish some sort of comparative baseline
however against which any improved implemen-
tations can be tested.

4. FIRST COMPARISON- NPP

In the first experiment on the NPP test set, 16
detection functions were compared with respect
to the detection of 3094 onsets. The trials were
run in MATLAB using a combination of the
original QMUL test code for the QMUL detec-
tion functions and the standard adaptive peak
picker second stage, and the author’s own im-
plementations of the alternative models. A close
comparability to the Bello et al. review paper
was thereby maintained. The different detec-
tion functions are named according to the de-

Fig. 2: NPP: Comparison of detection functions
1-4

scriptions in [1] where possible; that review pa-
per also gives full definitions for the peak picker
itself.

For each detection function, 64 values of param-
eter δ (-0.1 to 0.53 in steps of 0.01) for the adap-
tive peak picker were explored. Plotting onsets
detected against false positives for different val-
ues of the delta parameter draws out a Receiver
Operating Characteristics (ROC) curve.

In the competition were three of the QMUL de-
tection functions, some variants of the HFC de-
tection function, and various psychoacoustically
motivated models. Table 1 shows results, and
provides links to the equations for the detec-
tion functions where given above; the detection
functions will be referred to as DF1 to DF16 as
indicated in the table. 1OD stands for 1st order
difference. DF7 was tested because the QMUL
group had (perhaps mistakenly) been using this
alternative definition of Masri’s HFC. For DF9,
the maximum power was calculated in the time
domain within windows of 1024 samples with
step size of 512. ROC plots are given in fig-
ures 2, 3 and 4 for all the detection functions to
show the variation of the onset detector’s per-
formance with peak picker parameter δ.
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detection function score (eqn 17) CDR Onsets False Positives best δ
1. eqn (13), M=3, contour 89.5 83.9 93.4 4.4 0.1
2. eqn (13), M=2, no contour 89.3 83.6 93.4 4.6 0.12
3. PSF eqn (7) Jensen[10] 85.5 77.9 92.2 7.8 0.14
4. eqn (6) Hainsworth[7] 85.3 75.7 89.4 4.8 0.12
5. complexsd[3] 74.5 57.9 88.9 19.3 0.03
6. Klapuri[13] 74 55.8 82.6 11.6 0.03
7. HFC

∑
|X|k 1OD 74 56.8 85.3 15 0.09

8. spectral difference [1] 73 54.6 88.5 21.2 0.03
9. log(max power) 1OD 72.4 53.2 83.5 15.4 0.05
10. eqn (15) contour 70.4 48.7 80.1 13.8 0.21
11. eqn (4) Jensen[11] 69.1 46.5 81.8 18.4 0.1
12. HFC

∑
|X|2k2 64.3 32.4 83.8 30.4 0.03

13. Jehan[9] 59.4 26.8 68.4 14.4 0.09
14. phase deviation[1] 57.6 20.8 72.9 26.6 0.01
15. eqn (15), no contour 54 14.6 62.2 15.2 0.31
16. eqn (2) Masri[16] 42.2 -12.9 55.2 30.8 0.01

Table 1: NPP test set comparison of detection functions with QMUL peak picker

Fig. 3: NPP: Comparison of detection functions
5-10

Fig. 4: NPP: Comparison of detection functions
11-16
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4.1. Discussion

The best performing detection function is seen
to be the Klapuri/Hainsworth derived function
from equation (13) detailed in section 2.2. The
performance of this algorithm was seen to be
slightly improved by the equal loudness contour
correction (the db to phon transform was not
applied for DF2). The best performing values
of M are given here for each case. Given the
closeness of score between DF1 and DF2, it is
arguable whether the contour correction is nec-
essary, but the basic Klapuri principle of dif-
ference of logs, within ERB scale bands, shows
good promise. The original Hainsworth method
(difference of logs on the basic FFT bins) was
also successful, and whilst results were rela-
tively comparable for different values of α and
β, the original choices of a range of FFT bins
covering 300-5000Hz is the one whose scores
are given here. A full range version performed
marginally worse (score 83.9, CDR 75.3). That
compression by some exponent function is a use-
ful tactic is supported by the Jensen’s high scor-
ing DF3, and even a time domain power treated
by a first order difference of logs (DF9) achieves
a respectable score. Alternative version of this
windowed power fared moderately worse, the
bare power getting a [score,CDR] of [55,16.5],
the 1OD of this [65.5,36.2], the log power with-
out 1OD gaining [68.2,43].

In the course of compiling the table, various
variants of the HFC equation were tested, in-
cluding combinations of values for the expo-
nents of the magnitudes |X| and the weight-
ing factor k; none outperformed DF7. Various
authors have avoided Masri’s original formula-
tion of HFC as a sum over powers |X|2 and
instead treated the magnitudes |X|: this ap-
proach seems justified from the relative perfor-
mance of DF7 and DF16 in the table.

Purer loudness functions modeling the excita-
tion for a human listener perform less well at the
NPP task. This is not wholly unexpected if we
consider the applications again- our hearing sys-
tems are not necessarily set up to achieve good

literal segmentation performance, but to parse
events (Scheirer’s notion of understanding with-
out separation[19] is relevant here). Klapuri’s
beat induction frontend performs adequately at
the segmentation task, but is angled more to-
wards the discovery of useful onset information
for the correlation operations required by beat
induction. Jehan’s masking corrected excita-
tion function is not a great marker of percus-
sive onsets, though it may work well at discov-
ering the same events a human observer (rather
than one working with a sound editor) would ex-
tract from an audio stream. The loudness sum-
mation form of the equal loudness contour de-
tection function (equation (15)) is seen to per-
form much more poorly, though again this is
probably a case of whether modeling a human
response is the application. The contour cor-
rected version definitely outperforms the bare
log transform version however. A number of
loudness models were trialed [20] to see if they
could provide competitive performance, but in
fact, most likely for the reasons given above,
did not score particularly highly. DF9, the log
of the windowed max power, performed better
and is much more computationally efficient.

Whilst some effort was put into finding a supe-
rior performing detection function/peak picker
combination, the performance of the adap-
tive peak picker could not be significantly bet-
tered for the NPP test set, though it could
be matched by a slightly simpler smooth-1OD-
threshold peak picker (which has an advantage
in requiring less delay to operate in real-time
conditions). In particular, an implementation of
the note average energy (NAE) peak picker[15]
degraded performance; for example, DF1 fell to
a score of 77.2 and CDR of 62.7 with this peak
picker.

With respect to Bello et al’s original study[1],
the phase deviation performs significantly worse
compared to the spectral difference as given
in their table 1. Further, the high frequency
content no longer performs so well when taken
across the much expanded test set.
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Fig. 5: PNP- Comparison of top five scoring
detection functions

5. SECOND COMPARISON- PNP

In the second experiment, using the PNP test
set, the same 16 detection functions were com-
pared with respect to the detection of 446 on-
sets. These onsets were in general more widely
spaced than in the NPP set, and marked out
relevant pitched note events.

Table 2 gives the results, with the same set of
DF1 to DF16 above, unordered this time so as
to avoid confusing the reader with new labels.
A single ROC plot is provided for the best four
performing detection functions 5.

5.1. Discussion

Performance on the PNP task was markedly
worse for all detection functions assessed. High
rates of false positives were an inseparable side
effect of matching onsets. Pronounced energy
based cues for event boundaries were not ob-
vious on examination of the sound files, where
note events flowed into each other. Further, low
frequency amplitude modulation was a poten-
tial detection confound.

It is proposed that the test soundfiles in the
PNP case may be segmented on the basis of
stability of pitch percept, a task for which the

phase deviation detection function (a measure
of change in instantaneous frequency) was best
suited amongst those considered. Attempts to
devise a pitch tracker that can mark out event
boundaries by stability of cues are being in-
vestigated, though vibrato (frequency modula-
tion) on stringed instruments is another possi-
ble tracking confound- something analogous to
categorical perception should probably be built
in. In general, effective performance may rely
upon strategies specific to the recognition of fa-
miliar timbres and playing characteristics.

Whereas the NPP set was segmented effectively
by many different detection functions as a non-
linear editing task potentially superior to hu-
man listening, the PNP case is an example
where the modelling of human perceptual pro-
cesses must underlie effective mark-up. None
of the models investigated here is a sufficient
encapsulation of human segmentation by pitch
cues to score as highly as the earlier compari-
son. Smoothing of detection functions based on
energy cues was obviously insufficient to cure
the problems.

6. CONCLUSIONS

This study has compared a number of pub-
lished and original detection functions on two
contrasting large test sets of hand marked au-
dio files. The first case (NPP) was effectively
solved by difference of log power functions de-
rived from Klapuri’s work[12]. Relatively sim-
ple discrimination functions in this vein per-
formed well, with fuller psychoacoustic models
of loudness less effective in application. There
are differences between perceptual segmenta-
tion (finding event boundaries as a human ob-
server would function in real-time) and phys-
ical segmentation (breaking up events as fast
and as accurately as possible for digital edit-
ing purposes). This difference was further sup-
ported in PNP comparison, where a more sub-
jective mark-up of events had taken place in the
test data, most likely based on a pitch segmen-
tation strategy and not an intensity discrimi-
nation one. All detection functions performed
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detection function score (eqn 17) CDR Onsets False Positives best δ
1. eqn (13), M=3, contour 35.8 -36.8 51.3 43.5 0.36
2. eqn (13), M=2, no contour 27.6 -49.1 38.8 40.8 0.35
3. PSF eqn (7) Jensen[10] 36.1 -86.3 59.2 63.9 0.53
4. eqn (6) Hainsworth[7] 30.5 -50 44.8 46.9 0.44
5. complexsd[3] 31.1 -46.4 45.1 44.8 0.28
6. Klapuri[13] 12.5 -80.3 18.6 48.4 0.09
7. HFC

∑
|X|k 1OD 28.5 -146.0 49.8 74.5 0.53

8. spectral difference [1] 10.1 -84.3 15.0 48.9 0.38
9. log(max power) 1OD 7.6 -94.2 12.1 60.3 0.41
10. eqn (15) contour 11.9 -80.7 17.49 47.3 0.48
11. eqn (4) Jensen[11] 20.0 -129.8 34.8 74.1 0.53
12. HFC

∑
|X|2k2 0.6 -115.7 1.1 94.1 0.52

13. Jehan[9] 7.4 -85.4 10.1 35.7 0.36
14. phase deviation[1] 43.6 -15.7 59.9 37.2 0.08
15. eqn (15), no contour 9.3 -87.4 14.1 52.6 0.48
16. eqn (2) Masri[16] 9.1 -90.8 14.3 57.6 0.49

Table 2: PNP test set comparison of detection functions with QMUL peak picker

significantly worse and the most successful, the
phase deviation, could be related to a measure
of instantaneous frequency.

For applications, perceptual segmentation may
mimic the event categorisation of human listen-
ers, and has dividends in machine listening for
musical improvisation and composition. Such
signal understanding, however, is in contrast to
as fast as possible onset detection for percus-
sive transients, and requires some delay in op-
eration, typically of the order of 200mS when
modeling temporal integration processes. This
processing delay may also be commensurate
with note/phone event lengths and hence cat-
egorically quantised pitch tracks, where events
are marked up after they have occurred, giv-
ing chance to determine their boundaries. The
nature of the sound events to be detected de-
termines the appropriate detection strategy.
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