
ERRANT SOUND SYNTHESIS

Nick Collins
Department of Informatics, University of Sussex

N.Collins@sussex.ac.uk

ABSTRACT

The SLUGens pack for SuperCollider 3 is a collection of
novel algorithmic sound synthesis and processing UGens. This
paper describes various non-linear dynamic oscillators, buffer
data processors, breakpoint set synthesisers, and miscellaneous
filters. Non-standard sound synthesis has been neglected in mod-
ern research programmes concentrated on spectral and physical
modelling synthesis. Its goal is not the modelling and reproduc-
tion of sounds from perceptual or physical acoustical data but the
potential of any algorithm, cast into the audio range. Yet where
the composer seeks novel sound generation and control possibil-
ities, much interesting territory remains available to explore in
the context of what might be termed errant sound synthesis.

1. INTRODUCTION

Much sound synthesis is concerned with recreating existing in-
struments or acoustic events, though potentially any sound which
can come out of a loudspeaker can be created. Without an acous-
tic model, this often leads to raw noisy sounds, yet these are still
part of exploring new points in ‘the uncharted galaxy of synthetic
sound’ [10, p345]. This paper reflects this pursuit, following
previous experiments in breakpoint interpolation, wavetable and
dynamic oscillator synthesis and variants categorised by Curtis
Roads as ‘non-standard’. Indirect control via the parameters of
equations can be a liberating experience; it may enable the al-
ternative expression of inspiring spectral transitions, of a type
unencountered at the normal timescale and physics of airbourne
acoustics. Non-standard synthesis methods should be given a
fair chance to assert themselves again as independent abstract
sound sources. To use Julius O. Smith’s fourfold categorisa-
tion of synthesis algorithms [11], this work might fall under pro-
cessed recordings as manipulating pre-existing buffers of sound
data, or abstract algorithms. Some of the oscillators also show
the influence of nonlinear mathematics relating to models of real
physical systems; though as these are not originally sounding
structures, they are sonifications.

My personal motivation stems from my earliest experiments
with SuperCollider 3 plug-ins, converting various forms of Xe-
nakis’ General Dynamic Stochastic Sound Synthesis [14, 6] into
the Gendy UGens. I have subsequently explored the sound syn-
thesis potential of a number of alternative and even quirky pro-
cedures, and have released those with potential as open source
software. The structure of this paper follows that of a cata-
logue of experimental synthesis methods, to accompany the pub-
licly available SLUGens plugin pack for SuperCollider 3, which
should be explored in combination with the text (http://www.
informatics.sussex.ac.uk/users/nc81/code.php).
All of the UGens described in this paper run in real-time; most
run at a low average CPU cost (for example, on a 1.67GHz Mac
PowerBook G4 PPC, FitzHughNagumo: 1.5%, DoubleWell3:

2%) though some are dependent on parameter choices (Gravity-
Grid2 is variable with the number of masses: e.g., 4.5% (1 mass)
33% (10) 50% (20)). Most also have multiple versions enabling
variations of core behaviour – DoubleWelln where n=1 to 3, for
example – these correspond to the UGens provided in the distri-
bution, and each has a help file.

2. TECHNICALITIES

Non-standard synthesis routines are not usually tractable ana-
lytically to predict their time varying spectral properties; rather,
they are empirically explored.

Certain guards have to be in place to cope with blow-ups
in output values. Wrapping or folding (topologically, computer
game wraparound or bounce back from a hard surface) were of-
ten employed to keep a parameter within the range [0,1] or [-
1,1], though a sensible standard working range was empirically
determined for normal operation to avoid the imposition of extra
discontinuities through such measures.

Sometimes the outputs are highly aliased – these are not band-
limited oscillators [12]. The UGens are designed such that stan-
dard outputs are at a sensible audio rate without extreme slew;
but the nature of chaotic dynamics and the potential of noise
must allow for wilder behaviour.

A number of the SLUGens have a reset argument which restarts
calculation at a random, or parameterised, position. For the case
of dynamical equations this is equivalent to rerunning the simu-
lation from new initial conditions. Resetting also allows the im-
position of further periodic behaviour on a system, in the form
of hard (immediate) or soft (only if near a zero crossing or at a
period boundary) sync. Yet because of the complex dynamics
determining waveforms, alias free synthesis of the hard sync [1]
would not seem practicable.

3. NON-LINEAR OSCILLATORS

Beyond direct acoustic modelling, there remains a rich world of
dynamical equations which have interesting periodic or pseudo-
periodic (often chaotic) solutions. Through appropriate param-
eter choices these can be run with periodicities at perceptually
discriminable rates.

In dealing with dynamical equations, the discretisation ne-
cessitated by computer calculation requires numerical approxi-
mation of solutions given starting conditions, by the use of dis-
crete ODE (Ordinary Differential Equation) solvers. A number
of schemes can be employed [13, pp. 32-4], the best known and
most intuitive being the Euler approximation; another popular
choice is the more highly interpolated fourth order Runge-Kutta
scheme (and further options exist). It is possible to use a higher
sampling rate than the audio rate for ODE solver calculations,
but in practice, one audio sample at a time is the natural rate of
calculation.



Where available as input arguments to the UGen, parameters
of the dynamical system are often modifiable during calculation
at k-rate (control rate). Indeed, in one case, the actual external
force term is itself an arbitrary UGen. Any output frequency
is hostage to the dynamics of the given system, in combination
with the differential equation solver’s update rate. But sufficient
external periodic force or forced sync from resetting can impose
a fundamental frequency if required. In some cases, resets can
reduce wild behaviour from divergent trajectories for the ODE
solver (under the numerical constraints).

The virtues of these nonlinear oscillators is often in their
more pseudo-periodic and noisy outputs, particularly in chaotic
regimes, where interactive control can exploit the close bound-
aries between erratic behaviour and (temporary) stability.

3.1. FitzHughNagumo

Neuronal models from computational biology and biophysics
[5] are a rich source of behaviours, and may prove topical and
popular in artistic aesthetics allied to the advance of the neuro-
science of music and audition. For instance, Alice Eldridge [4]
looks at the entrainment behaviour of a pair of simulated neu-
rons, mapping the continuous output to discrete rhythms and
pitched events. A two-dimensional simplification 1 of the bio-
physics of an individual neuron are the FitzHugh Nagumo equa-
tions, which model the behaviour of a neuron recharging and
retriggering. A naive Euler ODE solver implementation of the
FitzHugh-Nagumo neuronal model for oscillatory firing can pro-
vide an audio oscillator.

δu

δt
= rateu ∗ (u− 0.3333 ∗ u3 − w) (1)

δw

δt
= ratew ∗ (b0 + b1 ∗ u− w) (2)

From these interlinked first order differential equations u is out-
put, though w also gives interesting aural dynamics. The SLU-
Gens also include a second experimental neural oscillator model,
TermenWang [2, p355]; both FitzHughNagumo and Termen-
Wang are highly sensitive to parameter choices and update rates.

3.2. DoubleWell

This UGen is a Runge-Kutta ODE solver implementation of the
chaotic Forced Double Well Oscillator [13, pp. 441-7]. The
equation governing the dynamics represents a two well poten-
tial, where the particle can settle into one of the two minima; but
an additional forcing term applies to the whole system which can
destabilise the particle from either well. There can be two forms
of oscillation, locally around one of the minima, or globally be-
tween the minima.

d2x

dt2
+ δ

dx

dt
− x + x3 = F cos wt (3)

The periodic forcing term is on the right – in the DoubleWell3
UGen this is replaced by an arbitrary UGen input.

Figure 1 shows the immediate oscillatory output of the sys-
tem over the first 200 samples with parameter values F = 0.4,
w = 1, δ =0.25 (following [13, Example 12.5.2, pp. 444-
5]). The system exhibits a chaotic transient (jumping erratically
between the two potential wells) before settling into a pseudo-
periodic orbit between them (actually a strange attractor in longer
term behaviour); with a smaller forcing term (such as F = 0.2),

1 Suppressing the effect of separate chemical ion flows.

Figure 1. DoubleWell oscillator with F = 0.4, w = 1, δ
=0.25.

it settles into oscillation within one well only after a chaotic tran-
sient, though which well is chosen is extremely sensitive to the
initial conditions. In terms of audio, this can lead to a reduced
amplitude DC offset oscillation; whilst the leak can be cured by
a LeakDC UGen and the amplitude by compression, multi-well
dynamics of greater amplitude are promoted by oscillator reset-
ting or increased external force.

3.3. WeaklyNonlinear

This UGen instantiates a naive Euler ODE solver implementa-
tion of the Weakly Nonlinear Oscillator with external perturba-
tion ([13, p.215] [9, p.189]). The equation:

d2x

dt2
− α(xγ + β)

„
dx

dt

«δ

+ w0
2x = input (4)

has a number of special cases, including the Duffing equation
(δ = 0, γ = 3, β = 0, input = 0) and van der Pol oscil-
lator (δ = 1, γ = 2, β = −1, input = 0). The nonlinear
term is not calculated if α is zero. Otherwise it is generated at
additional CPU cost. I have added the right-hand term as an
additional external forcing input; when non-zero this makes the
system increasingly chaotic since time dependence adds an extra
dimension to the phase space.

This equation has proved to be a rich source of dynamic be-
haviours, and all parameters can be controlled by k-rate UGens.
The equation constant w0 is the radian frequency of a linear os-
cillator in the absence of the nonlinear term – for small α this can
remain an approximate target frequency desired for oscillation
even with nonlinear perturbations. As an input to the oscillator it
is expressed by the user as a frequency in Hertz, then converted
to angular frequency internally.

3.4. GravityGrid

Newtonian equations for the force of gravity between a number
of particles quickly give rise to interesting dynamics. For the
GravityGrid UGen eight outer points equidistant on the perime-
ter of a square accelerate under gravity an inner moving particle,
whose distance from the centre gives the amplitude of the output
waveform (Figure 2). Position folding is used at the boundary to
avoid the moving particle escaping the square.

In the GravityGrid2 UGen an arbitrary number of influencing
masses can be created, at (x,y) positions and with mass values
given by a buffer of data passed to the UGen. This data can be
dynamically updated to change the playing surface. The moving
particle is restricted to the square (even if the fixed masses are
outside the square) and its velocity is itself folded to avoid run-
away momentum. The CPU cost is dependent on the number of
masses; these UGens can be expensive to run.

The original GravityGrid UGen in particular contained a num-
ber of idiosyncratic mathematical errors 2 in its implementation,

2 An error in the folding equation due to the behaviour of the ANSI



Figure 2. GravityGrid oscillator showing eight fixed
perimeter masses and the moving mass; distance from the
origin at the centre is the amplitude output.

which, however, give it a rich soundscape. GravityGrid2 is an at-
tempt to rationalise this, introducing in particular the speed lim-
its.

Varied dynamics are possible depending on the selection of
positions and masses, from smooth quasi-stable oscillations to
noise. More complex dynamics can occur by retriggering or
changes in the controlling masses.

4. BREAKPOINT SETS

Breakpoint sets have long been an interest of mine - some of
my earliest computer music research was in devising a synthe-
sis engine based on spline interpolation of breakpoints, explor-
ing schemes for the interpolation of breakpoint sets. Breakpoints
are an indirect route to wavetables, allowing a smaller number of
parameters (one x and y for each breakpoint) in specifying the
wavetable function shape. The spectrum is only analytically pre-
dictable from breakpoint positions for the case of equally spaced
abscissae [8].

4.1. KmeansToBPSet1

Successive iterations of a (soft) k-means clustering algorithm [7]
on data in a 2-D space ([0,1] by [0,1]) are used in this UGen to
form the basis of successive periods of a waveform for synthesis.
Each mean location is taken as a (time, amplitude) breakpoint,
though the number of data points contributing to clustering can
be much larger; the size of the background data set is an initial-
isation parameter for the synthesis but the number of means can
be dynamically changed within a bound.

For each cycle of the waveform, the soft k-means algorithm
is used to update the clustering by one step (the amount, the soft-
ness, is itself a parameter of synthesis). To determine oscillator
output, after sorting the means into time order (and the impo-
sition of points at (0,0) and (1,0) for continuity), the means are
taken as breakpoint sets (scaled over the y range [-1,1]). The
BPs are used via linear interpolation to construct output synthe-
sis based on the oscillator phase.

Re-triggering can be engaged either by forcing a new data
points set or new starting means. Means and data points are

C fmod function for negative numbers, a repulsive rather than attractive
gravity, a discontinuity with x position in the sign taken for the output
amplitude, and a rough trigonometric approximation for resolving com-
ponents of the acceleration vector in the two directions.

Num Instruction
0 Interpolate from last to new breakpoint over PARAM

*5000 samples (i.e. down to about 10 Hz, sampling rate
dependent)

1 New random breakpoint with amplitude from -PARAM
to PARAM

2 New breakpoint by perturbing last breakpoint amplitude
by PARAM

3 New breakpoint by interpolating (t=PARAM) from last
breakpoint amplitude to its inversion

4 New breakpoint by interpolating (t=PARAM) last two
breakpoints

5 New breakpoint by damping last breakpoint amplitude
(multiply by PARAM)

6 New breakpoint at amplitude PARAM
8 Do next command if probability PARAM
9 Goto instruction PARAM in the program listing

Table 1. Table of virtual machine instructions used by the
Instruction UGen.

drawn at random or according to positions passed in by an ad-
ditional buffer. Hard sync is avoided by storing an update flag -
the new data or means are imposed at the beginning of the next
cycle before the soft k-means update calculation. 3

4.2. Instruction

The Instruction UGen explores some possibilities in live coded
synthesis by creating and interpolating successive breakpoints 4

according to certain instructions. A buffer holds the current pro-
gram of virtual instructions, which can be swapped at any mo-
ment. The synthesis is fundamentally breakpoint synthesis with
linear interpolation. This virtual machine UGen is a live codable
version of ‘instruction synthesis’ [10] as explored by Paul Berg,
Gottfried Koenig and others most intensely in the 1970s.

The program buffer holds instructions on the synthesis server
in the form of successive COMMAND/PARAM number pairs.
The limited command set is given in Table 1.

In most cases, sensible values for PARAM are from 0.0 to
1.0; but instruction 9 uses a direct index into the instruction
buffer. To give an example of combining instructions, a zero
amplitude breakpoint could be created by instruction (3,1) then
(4,0.5). The virtual machine could crash, for instance if only in-
struction 8 was used in the buffer (essentially in fact, if 0 is never
called to advance time). A safeguard in the UGen means that if
more instructions are run than samples in a calculation block, a 0
instruction is forced to cover all remaining samples in the block.

A wide range of different noise sounds can be explored via
this algorithm; the simplicity of the virtual machine makes it
very easy to algorithmically generate new programs, and it is
possible to algorithmically swap the buffer, delineating timbral
events.

3 The electronica artist Cylob (Chris Jeffs) featured this
UGen on his blog via a demo track built using his Cy-
lob Music System sequencer to control the oscillator
(http://cylob.blogspot.com/2007/03/kmeanstobpset1.html)

4 The idea of calculating just from one breakpoint to the next at a time
to generate the waveform is also implicit in my treatments of Xenakis’
GENDYN algorithm.



4.3. Wave Terrain and VMScan2D

The idea of a sound synthesis virtual machine has also been
adopted to create a scanning (read pointer controlling) UGen,
VMScan2D, whose paths are determined by the ‘program’. The
x and y outputs can act as controls to an independent WaveT-
errain UGen; the terrain is read by linear interpolation of (x, y)
position explicitly on a two dimensional buffer describing the
amplitude surface function z(x, y).

5. MISCELLANEOUS SOUNDSTREAM AND BUFFER
PROCESSING UGENS

5.1. SortBuf

Inspired by Alex McLean’s (unpublished) work on the use of it-
erations of a sort algorithm for the generation of permutations
of event material in algorithmic composition, this UGen succes-
sively sorts the contents of a buffer using the naive O(N2) bub-
blesort algorithm. The speed of sorting (number of sorts each
cycle of the buffer) is a parameter of the processing - faster sorts
can be CPU heavy; the algorithm is amortised and the state of
the sort is stored between sample frame calculations and blocks.

The sorting process causes a gradual distortion, as the target
buffer gets sorted into increasing sample values over time, a de-
structive operation on the buffer. Since new buffer contents can
be set at any time, a form of SuperCollider language controlled
hard sync is possible by sending successive copy messages to the
buffer, restoring its contents from a default dataset.

5.2. Breakcore

This UGen was written in 50 minutes (C code, help file and Su-
perCollider class) in front of a live audience at the TOPLAP jam
at transmediale 2005. It allows repetitions of recent contents of
a delay line like the machine gun fire stutters of the breakcore
style. It works, but is in a somewhat scruffy state of presentation
due to its live origins. It is maintained in the distribution as an
artistic proof of concept.

5.3. LPCError

In a twist on Linear Predictive Coding Analysis [10, 3], this
UGen outputs the short-term 64 sample (block-size) linear pre-
diction of the signal. The only parameter is p, the number of
filter coefficients (1-64) with which to model the signal within
blocks. In practice, the UGen operates as a sort of lossy analysis-
resynthesis distortion.

5.4. LTI and NL

LTI is a UGen which allows the specification of an arbitrary lin-
ear time-invariant filter. The feedforward and feedback coeffi-
cients are passed in via respective buffers, thus representing the
general LTI filter difference equation in the time domain. This
is not a pole/zero view, so time domain coefficients must be cal-
culated independently to work from the z-plane backwards. A
corollary is that stability is not guaranteed, though this is also
part of the fun. Independent SuperCollider code is supplied to
try out possible filter coefficients, which generates an impulse
response and frequency and phase response plots.

NL and NL2 generalise this to arbitrary non-linear filters in
powers of x (previous input) and y (previous output), without
and with cross-terms respectively. Blow-up detection is built in,
and current and buffered previous outputs are reset to zero if

absolute output or rate of change of output exceeds certain user-
specified guard values.

6. ERRANT

This paper has presented some strange and alternative ideas for
abstract sound synthesis procedures.

An adventurer never settles down but is always seeking more
adventures. Some future ideas would be:

• To use arbitrary potential wells for particles. 5

• To employ all sorts of sorting algorithms.

• In the WeaklyNonlinear UGen, to allow arbitrary polyno-
mial sums of x and dx

dt
.

• Coupled networks of non linear oscillators.

This empirical style of sound synthesis might be dubbed er-
rant synthesis; in the old sense of seeking out adventure, and the
newer sense of deviating from a standard.

7. REFERENCES

[1] E. Brandt. Hard sync without aliasing. In Proc. Int. Com-
puter Music Conference, 2001.

[2] G. J. Brown and D. Wang. Neural and perceptual model-
ing. In D. Wang and G. J. Brown, editors, Computational
Auditory Scene Analysis: Principles, Algorithms, and Ap-
plications. John Wiley and Sons/IEEE Press, Hoboken, NJ,
2006.

[3] P. R. Cook. Real Sound Synthesis for Interactive Applica-
tions. AK Peters, Wellesley, MA, 2002.

[4] A. Eldridge. Collaborating with the behaving machine:
simple adaptive dynamical systems for generative and in-
teractive music. PhD thesis, University of Sussex, 2007.

[5] W. Gerstner and W. Kistler. Spiking Neuron Models. Cam-
bridge University Press, Cambridge, 2002.

[6] P. Hoffmann. The new GENDYN program. Computer Mu-
sic Journal, 24(2):31–38, 2000.

[7] D. J. C. MacKay. Information Theory, Inference, and
Learning Algorithms. Cambridge University Press, Cam-
bridge, 2003.

[8] Y. Mitsuhashi. Piecewise interpolation techniques for au-
dio signal synthesis. J. Audio Eng. Soc., 30(4), 1982.

[9] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchroniza-
tion: A Universal Concept in Nonlinear Sciences. Cam-
bridge University Press, Cambridge, 2001.

[10] C. Roads. The Computer Music Tutorial. MIT Press,
Cambs, MA, 1996.

[11] J. O. Smith. Viewpoints on the history of digital synthesis.
In Proc. Int. Computer Music Conference, 1991.

[12] T. Stilson and J. Smith. Alias-free digital synthesis of clas-
sic analog waveforms. In Proc. Int. Computer Music Con-
ference, 1996.

[13] S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison-
Wesley, Reading, MA, 1994.

[14] I. Xenakis. Formalized Music. Pendragon Press,
Stuyvesant, NY, 1992.

5 Reminiscent perhaps of Bob Sturm’s physics sonification experi-
ments.


