
INFNO: GENERATING SYNTH POP AND ELECTRONIC DANCE MUSIC
ON DEMAND

Nick Collins
University of Sussex, Department of Informatics

N.Collins@sussex.ac.uk, http://www.informatics.sussex.ac.uk/users/nc81

ABSTRACT

Infno is an algorithmic generator of electronic dance
music (EDM) and synth pop fully implemented in Super-
Collider 3, the latest generative music work in a line of
‘Infinite Length Pieces’. The program attempts to model
the production of electropop and dance music styles with
a closer union of parts than typical in many previous al-
gorithmic composition systems. Voices, including a per-
cussion section, bass, chord and lead lines, are not inde-
pendently created; the parts, generated in any order, are
influenced by underlying harmonic ideas, rhythmic tem-
plates and already generated lines. In particular, dynamic
programming is used to select melodic lines under cost
constraints of register, harmonic template, existing voices
and voice leading heuristics.

This paper is the first technical write-up of Infno’s mech-
anisms, and also reports evaluation by online question-
aires and a seminar listening survey. Source code and mu-
sical examples are available at the author’s web site.

1. GENERATIVE POPULAR MUSIC

Infno is a generative music program written to demon-
strate on-demand creation of convincing musical pieces
which engage popular electronic styles and employ live
synthesis and effects. Research goals include substantial
variation of output between each run, and an investigation
of the close inter-relation of parts alongside arbitrary part
creation order.

Whilst the Illiac Suite is the more famous, a highly rel-
evant early algorithmic composition is Push Button Bertha
from 1956 (Datatron program designed by Douglas Bolitho
and Martin Klein, with the output melody line set to lyrics
by Jack Owens [1]). Despite a failure in the pop charts
(perhaps linked to only receiving one radio play), the en-
gagement with popular music is itself of note, and it pro-
vides an inspiration to this project. Another precedent
from the algorithmic composition literature is Ames and
Domino’s Cybernetic Composer [2], which tackled MIDI
data generation in four styles (standard jazz, latin jazz,
rock and ragtime) as a demonstration program for Kurzweil
synthesisers.

An early example where live synthesis is built into the
program is provided by the various releases of Arguru and
WakaX’s Saiko (2000), a goa trance simulator. It is not

fully autonomous, requiring manual control of many pa-
rameters, and does not deals with any longer term form
than a single (at most) 64 step pattern. In 2002, the Mad-
Waves company released a generative music player as part
of a portable MP3 player, the MadPlayer. Tackling a
number of styles using six instrumental parts, this pro-
prietary device creates music on demand and allows the
realtime substitution of parts, and the export of favourites;
it can operate autonomously, with additional options for
user tweaking. The device uses sample sets for synthesis
and an internal MIDI representation. A more recent ven-
ture is Mungo Enterprise’s Infinite Horizon (2006) a hard-
ware box which can generate techno tracks constructed of
standard voicings, with manual user control of form.

My own first (MIDI based) techno generation program
was written in 1997 in York as an exercise in C program-
ming; I have pursued such research extensively over the
last decade. Algorithmic composition experiments with
UK garage and jungle styles (amongst many others) have
been previously described [5], and I might mention a con-
tribution to John Eacott’s Morpheus CDROM of 2001,
and the various manifestations of BBCut. 1

My most recent project attempts to up the scale of au-
tomatic music engaging with contemporary styles. It is
both a compositional response to, and an investigation of,
new technological directions, as well as a necessarily mu-
sicological study through heuristic modelling. The genre
labels ’synth pop’ and ’techno’ are used to indicate a gen-
eral stylistic space of action, and to side step the dance
music culture’s genre fixation. Synth pop is treated since
pursuing techno alone would leave the author open to ac-
cusations of modelling too simple a style (even though
I would argue that many authors substantially underesti-
mate the many facets of musical complexity across EDM).
Live synthesis is used for all voices, and the largest sam-
ples are at the level of 100-250msec sources for sample
playback synthesis, primarily for percussive events. The
paper will describe the main aspects of the program’s im-
plementation, alongside evaluation based on internet sur-
veying and seminar groups.

2. OVERVIEW OF INFNO

Describing every detail of Infno would be exhausting; ul-
timately the program is its own best description, but I will

1 A chapter on this work appears as part of my 2006 PhD thesis.



Figure 1. Instrument class and subclasses

provide a guide to notable aspects of the design and tech-
nological novelties.

A note should be made concerning the balance of ma-
chine learning and expert system in this project. Whilst a
database of chord sequences has been developed for one
of the harmonic models, Infno uses a vast number of man-
ually specified rules (heuristics). In terms of Pearce et al.
[7] it is primarily an ’algorithmic composition’ and not
empirical musicology. Although it engages with contem-
porary styles, the impossibility of portraying them without
also influencing their development through technology is
acknowledged in advance.

2.1. Object oriented design

Unified Modeling Language class diagrams are presented
in figures 1 and 2, highlighting the main inheritance, as-
sociative and container 2 relations of the Infno class hier-
archy. Many attributes and operations have been missed
out for reasons of space, and to focus on essential design
decisions.

The abstract Instrument superclass represents a par-
ticular compositional voice, of which there are nine avail-
able by default (kick, snare, hat, perc(ussion), bass, leads
1 to 3, and chord). Subclasses implement the play method
polymorphically to playback n elements of a 64 step se-
quence (by default, representing sixteenths over four 4/4
bars). This innate quantisation is appropriate to the stylis-
tic domain, and whilst timing can be adapted by groove
and fill parameters, provides a basic framework for gener-
ation and playback. Monophonic/glissando playback ca-
pability is provided in the Pitched class as a common an-
cestor of MonoBass and MonoLead; the lags attribute
and precalculatelagtimings operation allow the genera-

2 marked as 1 to many (*) in UML

Figure 2. Infno main classes

tion, in advance of playback, of necessary additional schedul-
ing parameters for a monophonic sequence. The Chordal
class has instance variables for sustain parameters, and
various specialist material generation instance methods are
noted for basslines and the melody generation algorithm
based on dynamic programming to be discussed below.
Indeed, each class has its own methods for the generation
of appropriate material.

Each voice can support or oppose other previously cre-
ated parts, such that the order of creation of the parts im-
pacts substantially on the algorithmic composition. The
chief innovation is the getRelations method, which, given
a specified list of preferences of the form [voice, chance
of opposition] runs through that list to find the first exist-
ing voice which will influence material generation for the
new voice to be created. Support or opposition of voices
is primarily of rhythmic material but becomes pitch based
for the lead parts in particular, through the dynamic pro-
gramming cost algorithm detailed below.

The second UML diagram in figure 2 shows the main
classes in Infno; Infno itself is the central singleton class
whose single instance represents the generative program.
The various methods from demo to techno will be de-
scribed below and enable particular forms for generative
pieces created on demand. Both Harmony and Rhythm
are abstract template classes which provide chord sequences
and aggregate probabilistic rhythmic templates as starting
points for material generation within a given HyperMe-
asure, from which the individual Instrument subclasses
are guided in creating parts; Harmony will be more closely
studied in the next section. Each HyperMeasure is gener-
ated as a four measure phrase, though they may be played
back over a smaller number of beats and under various
fill and variation operations which subtly or strongly alter
existing material.

2.2. Harmony generation

Two main methods for generating harmonic templates have
been designed. Both create a list of chords (for the chordal
part and as dyamic programming constraints) and bass
root notes (for the bassline generation) with an accompa-
nying harmonic rhythm (allowing for example a three beat
then one beat pair of chords in a bar rather than a single
full measure chord).



The first method draws on a database of typical pop
chord sequences, described either via a diatonic represen-
tation of (duration, degree) for the quick specification of
major/minor chord pop sequences or a chromatic system
of (duration, root chroma, chord type) for more involved
sequences. There is a chance of variations on the database
sequences by rotation and permutation, root alteration and
transposition.

The second method is a rather more complicated heuris-
tic system. Chord qualities are altered and extended by
sevenths, ninths, elevenths, by suspensions and other har-
monic devices. Chord substitutions and root inversions are
available, as well as the Prokofievan device of an entirely
nonstandard bass root note.

Whilst C major is the home key, there are chances for
both global and local (hypermeasure) key changes. An
instance of the Harmony class holds the data after gen-
eration and provides various helper methods for creating
possible matching scales and querying harmonic data at
any given point in a hypermeasure.

2.3. Dynamic programming algorithm for melodic lines

The most technical part of the Infno program is a dynamic
programming algorithm for melodic line generation which
takes into account existing parts, harmonic constraints and
note transitions. In order to explore different possible
melodic algorithms, the costs associated with the dynamic
programming are altered (within controlled bounds) for
each run, following certain heuristics, which allows for
different characters for each run.

The full dynamic programming algorithm would take
much longer than this paper to reproduce, so only im-
portant facets are discussed here. For each required note
at a given step of the sequence, costs are determined for
every chromatic tone over a two octave range (24 possi-
bilities) and with transition cost from the last 24. Con-
tributions to the calculated cost value of each option are
detailed in Table 1. The numerical ranges give a rough
idea of the relative values costs can take on, but the actual
distributions guiding the selection of values for each dy-
namic programming run are more complicated and locked
to SuperCollider code, so are not further detailed here.
The curious reader can examine the source code method
InfnoLead:dynamicprogramming1 for further informa-
tion.

The Harmony class provides functions to find the best
fitting scales at a given moment in time, taking into ac-
count local chord choices. Diatonic notes are then deter-
mined from these scale patterns. Deliberate noise can be
added both at the individual transition and best path selec-
tion stages.

A final cost for each possible transition from note i to
note j at a given time in the hypermeasure is established
based on:

cost(i, j) = α∗transition(i, j)+β∗contour(j)+γ∗penalty(j)
(1)

Cost Details of numerical cost

repetition accumulates based on number of repetitions (1-
10 per prior repetition)

tritone transition penalty for a specific interval 0-20
transition cost absolute distance from previous note * (0-2)
contour cost absolute distance from ideal contour for part
chromatic tone 8-25
diatonic tone 4-10
chord tone based on metrical position: half note: 1-4 quar-

ter note: 0.0-2.5 other: 0.0-0.5
voice interaction penalty for being on another voice’s notes: 0-10

Table 1. Table of dynamic programming costs

where the weighting constants α,β and γ are themselves
determined for each run (in the range 0.0 to 1.0). Each
summand is determined from the various cost factors il-
lustrated in the table as split up by horizontal lines. The
contour cost refers to separation from an ideal contour de-
termined prior to the run of the dynamic programming al-
gorithm.

In practice, the best path (which will directly yield the
final melody) is determined by full dynamic programming
with forward and backward (Viterbi) stages. However, for
speed of calculation, an option is available to use a greedy
online version [8] which will simply take the best pitch at
each stage during the initial forward calculation.

2.4. Infpop and Infno: Synthpop and techno genera-
tion modes

Two main playing modes are provided, built out of the mu-
sical machinery described in previous sections. Each run
of the program in one of these modes selects a new ap-
propriate tempo, groove, some InfnoMix instances which
determine which synthesis methods and effects are em-
ployed from a database for each part, and a set of Hyper-
Measures as musical materials.

Synthpop mode generates popular song forms, based
on the probabilistic juxtaposition of intro, riff, verse, bridge,
chorus and middle8 sections following various heuristics,
varying for each section the number of repeats and instru-
mentation, and allowing certain types of fill (both eighth
note permutations and rolls/stutters). The techno play-
ing mode generates tracks over a range of tempi, impli-
cating various subgenres. 3 The formal construction fol-
lows the layer-based work of techno, where gross changes
are rarer, whilst instrumentation (the current combination
of parts) is often varied one part at a time (perhaps by
adding one extra element every four measures). Whilst
there are a few other playing modes (a demo mode, and
a novelForm mode which explore non-standard popular
song structures) these two are the most developed and are
the subject of the evaluation.

3 Electronic dance music categories are notoriously fickle, often so-
cially and commercially constructed, and no further analysis along these
lines is attempted here except to observe that allusions to certain styles
naturally fall out of tempo and groove choices in combination with in-
strumentation and materials.



3. EVALUATION BY PEER FEEDBACK

Feedback on the Infno project has been solicited from a
number of sources, from workshop and seminar presenta-
tions, to an official source code release and accompany-
ing user survey. 4 The majority of data were qualitative,
though rating scales were used for a number of question-
aire responses, and a ‘spot the difference’ listener survey
was carried out at a seminar where 24 respondents tried to
distinguish Infno’s output from manually composed out-
put, as well as to rate individual tracks. Any choice of test-
ing procedure can be problematised for the subjective and
social domain of music, so the primary aim of evaluation
was to gather feedback as guidance for future iterations
of the software. Certainly, ‘musical output Turing tests’
are problematically disconnected from interactive conver-
sation [3], and Turing will not be invoked further here.

Key questions were to assess the musical quality or ap-
propriateness of synthesised outputs, to have users con-
sider the variation in output allowed by this generative
musical artefact, and to informally probe John Eacott’s
‘earworm humming test’ for generative music, of the mem-
orability of output constructions [6].

As much as anything else, the seminar listening task
revealed much about the individual subjectivities of the
participants. Six thirty-second extracts from techno tracks
were played; subjects were instructed to rate each track
on a scale from 1-7, and to mark each as either human-
composed (at a standard sequencer) or automatically gen-
erated by Infno. They were further instructed that three of
each type were present, though in fact there were two hu-
man and four Infno generated tracks, the rationale of this
deception being to find the Infno track considered ‘most
human’. No statistically significant results (both correla-
tion and t-test) were found to distinguish perception of hu-
man and computer generation, nor quality (as some sub-
jects wrote in the comments boxes on their experimental
forms, ‘I found it very difficult to discern any difference!’
or ‘no correlation between quality and hand/auto gener-
ation’). There was no correlation either between the at-
tribution of direct manual human authorship and quality,
demonstrating a lack of bias against machine composi-
tion per se. Electronic music raises the spectre of algo-
rithms up front, as noted by a number of participants, who
discussed arpeggiators in sequencers, but perhaps over-
estimated the automation used by dance music produc-
ers already. However flawed the experimental setting, the
listener survey became a useful basis for discussion, and
participants provided much constructive criticism on the
musical quality of outputs and the status of the generative
music artefact.

Infno’s source code had also been released, with a ques-
tionaire included in the download. Users were encouraged
to fill in the questionaire as they used the program for the
first time. Aside from musical background, subjects gave
qualitative and quantitative responses on issues of musical

4 For background information on evaluation methodology and inter-
net surveying in particular, see, for example, Cohen et al. [4]

quality and variation of output, and memorability. Varia-
tion was consistently rated more highly than quality. The
questionaire collection is ongoing, and may be built into a
standalone release at a future point. Indeed, third parties
have become involved in the testing cycle; Chris Jeffs was
kind enough to build an Infno DJing application with built
in track rater!

There is no space to go further into individual feedback
in depth here, however, conference presentation would
give an opportunity to expand upon this evaluation.

4. CONCLUSIONS

Potential applications for Infno range from installation and
fixed composition outcomes, through the automatic gener-
ation of material for beat tracking experiments, to musico-
logical engagement with contemporary musical styles and
even new generative performance practices such as gener-
ative karaoke. Indeed, it is in the latter capacity that a pro-
totype of Infno appeared at last year’s SuperCollider sym-
posium, with Takeko Akamatsu daring to improvise a new
song to a backing track she could not possibly have heard
before, using the lyrics from Push Button Bertha. Further
work in that direction might necessitate incorporation of
various (existing, third party) automatic lyric/poem gen-
eration programs, and even the composition of vocal lines
themselves, perhaps with guide synthesis from Vocaloid
or similar programs.

Future quantitative evaluation may be carried out, thought
such work is dependent on ‘freezing’ the version of the
program temporarily for the purposes of review. It is tempt-
ing to employ secret shopper techniques from posting gen-
erated tracks anonymously or under psuedonyms or under
submission to demo tape criticism.

In the mean time this project stands as an exhortation
to take seriously standalone generative music systems of
more ambitious scope, as potentially strong exemplars of
the computer music field’s progress and capability.

5. REFERENCES

[1] C. Ames. Automated composition in retrospect: 1956-1986.
Leonardo, 20(2):169–185, 1987.

[2] C. Ames and M. Domino. Cybernetic composer: an overview. In
Understanding Music with AI: Perspectives on Music Cognition,
pages 186–205. The AAAI Press/ MIT Press, 1992.

[3] C. Ariza. The interrogator as critic: The questionable relevance of
Turing tests and aesthetic tests in the evaluation of generative music
systems. Computer Music Journal, under review, 2008.

[4] L. Cohen, L. Manion, and K. Morrison. Research Methods in Edu-
cation (6th edition). Routledge, New York, 2007.

[5] N. Collins. Algorithmic composition methods for breakbeat science.
In Proceedings of Music Without Walls, De Montfort University, Le-
icester, June 2001.

[6] J. Eacott. Contents May Vary: The Play and Behaviour of Genera-
tive Music Artefacts. PhD thesis, University of Westminster, 2006.

[7] M. Pearce, D. Meredith, and G. Wiggins. Motivations and method-
ologies for automation of the compositional process. Musicae Sci-
entiae, 6(2), 2002.

[8] S. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach (Second Edition). Prentice Hall, Upper Saddle River: NJ,
2003.


