Live Coding Practice
ClickNilson

University of Sussex
Depatment of hformatics
Falmer, Brighton, BN1 9QH
+44 (0)1273 877837

N.Colins@sussex.ac.uk

ABSTRACT

Live coding is almost the antithesis of immediate physical
musicianship, and yet, has attracted the attentions of a number
of computer-literate musicians, as well as the music-savvy
programmers that might be more expected. It is within the
context of live coding that I seek to explore the question of
practising a contemporary digital musical instrument, which is
often raised as an aside but more rarely carried out in research
(though see [12]). At what stage of expertise are the members
of the live coding movement, and what practice regimes might
help them to find their true potential?

Keywords

Practice, practising, live coding

1. INTRODUCTION

Rather than the composer-pianists of the 19th century, the
21st century is seeing a rise of composer-programmers, who
can explore electronic music through its natural tool, the
computer, even in live performance situations. With the
computer such a ubiquitous feature of modern life, art which
confronts its mechanisms and processes has great
contemporary relevance. In this respect, live coding, the art of
programming a computer under concert conditions, can enable
a novel engagement with the notions of algorithm, and the
mapping from code to musical resultant [4, 20]. Since the
computer is the instrument practised most readily by computer
musicians, why not let this programming practice become the
basis of new performance practice side stepping the heritage of
gestural acoustic instruments? Live coding provides an
alternative opportunity to keep the human being involved in
live electronic music.

Live coding has attracted a certain amount of press (see [1,3],
and the hornet’s nest of slashdot commentaries on [9]), some
of it bad, and certainly raises controversies, from those of
physicality and immediacy, to obscurantism and
intellectualism. Certain aspects of the physical question
related to practice and automaticity will be tackled later in this
paper, but my primary focus will avoid such debates (and I
would argue that a New Interface for Musical Expression does
not have to rely on an overtly physical central substruct to be
expressive in human music making).

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Nime’07, New York.

Copyright remains with the author(s).

I wish to discuss the practice of live coding, not only as an
area of investigation and activity, but also in the sense of
actually practising to improve ability. I shall describe the
results of a month long experiment where live coding was
undertaken every day in an attempt to cast live coding as akin
to more familiar forms of musical practice.

Exercises will be discussed that may be found efficacious to
improve live coding abilities. In relation to these, literature
from developmental and educational psychology (both of
music and computing), and theories of expertise and skill
acquisition, were consulted. The possibility of expert
performance [7] in live coding is discussed.

I should state at the outset that I will be focusing primarily on
one particular form of live coding in this paper, that of
programming a computer on a concert platform as a
performance act, often as an unaccompanied soloist. I will not
treat cases of those interactive explorations, outside of
realtime audience environments, enabled by interpretative
programming languages and collaborative coding, interesting
as these are [13] (Julian Rohrhuber: ‘To me (personally, not as
an observer) live coding 1is about conversation and
experimentation only. The only way to "practise" conversation
is to converse’ [personal communication]). Instead, the
emphasis is on that situation which demands potentially the
greatest cognitive load, and hence is of great subsidiary
interest as a compositional constraint, psychological test, and
end-user programming study [2].

2. THE BATTLEGROUND: BURNT FROM

EXPERIENCE

By way of setting the scene and highlighting the challenges
implicit in live coding, I shall try to be brutally honest
concerning three concerts I found myself participating in. The
first two were dubbed as sporting duels, couched in such hard
hitting description as ‘13 rounds of hard typing action till
Code Out; For the World Programming Federation
Fingerweight Belt (Turingsberry rules apply)’. Such public
contests show some (lighthearted) affinity with Ancient Greek
dialectics, the slow public mathematical competitions of
Renaissance Italy (solving the cubic equation (Fior vs
Tartaglia (1535), Tartaglia vs Ferrari (1548)); the meetings of
piano virtuosi (Mozart vs Clementi, Beethoven vs everyone);
chess (Kasparov versus Deep Blue?) and in literature, Hermann
Hesse’s The Glass Bead Game.

In the first concert, the ‘Battle of the Belge’ (Dorkbot Ghent,
May 21% 2005), I struggled against Alex McLean, who at the
time was live coding with his own Perl system. This was
possibly the better of my two professional fights, and in truth
we contestants were conspiring in some rounds. Whilst
exploring certain algorithmic musical devices we otherwise
could not have navigated, we were both disappointed in the

level of actual original coding achieved during the bout, for
we fell back on certain presets and tricks too frequently.

The second concert saw me take on that fearsome inventor of
ChucK, Ge Wang [19], in the ‘Battle of Barcelona’ (off-ICMC,
7™ September 2005). Due to a build-up before the bout, and
amusingly partisan SuperCollider and ChucK crowds, the
audience’s expectations were somewhat at odds to our own
preparations. We found it hard to ‘fight’ in the way that had
become expected, and missed many tricks that would have
suited the occasion (such as fast coding of snippets for trading
chops, or the ‘code out’ ending of deliberate coded crash). In
an ICMC panel on interaction the next day, David Wessel
accurately observed that there was a lot of extra musical
content, and was skeptical (like many of us) about the depth of
programming possible under pesky realtime constraints.

In general, my disappointment after these two events might be
traced to some idealism concerning the level of musical
coding achievable in front of an audience. Despite a week of
daily practice ahead of the Barcelona bout, I was left feeling
unresolved whether improved practice procedures might assist
with the general facility of live coding.

In contrast, the third concert was an experimental theatre
performance interlude in an audiovisual tour (Brisbane, 7%
July 2006), which slid by with some small live coding
adventure, but was not overly dramatic nor incisive. Sharing
the bill, however, was aa-cell, an Australian duo (Andrew
Brown and Andrew Sorensen) who live code using the
Impromptu system based on the Scheme language [3, 17]. 1
found myself highly impressed with the Andrews’ framework
for improvisation in concert. A week or so later I was able to
see them repeat the concert, with similar success, and sufficient
variation, to convince me of its improvisational lucidity.
Whilst the algorithmic engagement was still somewhat weak
compared to my idealistic stance, the careful balance of
precoded structures (particularly used at the beginning to
cover initial set-up times) and on-the-fly construction within a
musical form, were the best I’d seen. It turned out that this pair
had been practicing together frequently.

3. PERSPECTIVES FROM PSYCHOLOGY

It is worthwhile to pause at this point and consider a general
overview of pertinent psychological literature on expert
performance and educational strategy.

It is recognised that expert computer programming can take as
much development as musical skills. Norvig [11] satirises the
‘Learn Programming Language X in 14 Nanoseconds’ books
and advocates a practical ten year course of obtaining
programming proficiency. In a review of expert performance,
Ericsson et al. [7] place programming alongside practical
musicianship, and outline ‘The 10-Year Rule of Necessary
Preparation’. Importantly, the necessity of ‘deliberate practice’
is proposed as essential to obtaining an internationally
recognised level of expert performance: ‘the levels of
performance individuals attain after years of experience alone
are much lower than those of experts who have adhered to
regimens of careful training and practice’ [7, p.297]

Such concentrated formal training is often at odds with
entertaining, informal practice sessions. This distinction is
raised by Lucy Green in a study of popular musicians and their
(predominantly informal) practice habits [6]. Popular
musicians often characterise their learning as requiring fun,

though they may also become obsessively involved. This may
reflect the situation for many live coders. In contrast, John
Sloboda has noted the compromise required in teenage skill
development for classical musicians: ‘rapid progress is often
achieved only by repetitive practice far in excess of what is
pleasant or intrinsically rewarding’ [16, p.225].

How much deliberate practice have live coders been engaging
in anyway? The standard is set by those hard working classical
musicians: professional violinists will typically have done
10000 hours of practice by the age of 20 [5, p.183]; since the
authors also note that music education before the age of ten
should consist mainly of fun and sociable informal lessons,
with intense practice commencing in teenage years, that might
work out at around three hours a day consistently over 10
years. Sloboda [15] gives a figure of 7000 hours of dedicated
practice by the age of 18 by the better violinists in an academy
compared to half that for those rated by the teachers more
likely to remain amateur.

From an email survey of prominent live coders, the number of
hours of dedicated practice that seems to have been undertaken
works out at around 100. Considering the number of hours
spent practicing so far as an indication of grading with respect
to [15, p.400, fig. 1], on this basis live coders in general might
be at ABRSM Grade 2 or 3 (out of a possible 8, and not
including further diploma exams).!

Of course, there are other sorts of relevant activity — many
thousands of hours of general programming experience for
some individuals, and many live coders also have extensive
instrumental experience. = Thus, depending on the
transferability of general programming skills to live coding,
some may be post Grade 8. Yet the specialization of expert
skills can lead to difficulties in transference [14, 18]; in some
cases, the cognitive task of live coding may be sufficiently
novel to undermine conventional programming experience,
forming its own alternative software engineering skill. Live
coding can demand producing functioning code to a strict
time limit, to find ways to introduce or modify code with low
latency. High level planning routines [7, p.285] and standard
working methods can be undermined by these requirements
just as instrumental improvisation delivers a very different
cognitive load to non-realtime composition.

4. REFLECTIONS ON PRACTICE

In an attempt to study the implications of practice for live
coding, Fredrik Olofsson and myself devised and self-
administered a study last August, in which we were partly
joined by other live coders including Julian Rohrhuber. For
the duration of the month, we each committed to an hour of
live coding practice (using SuperCollider) each day, on top of
whatever other programming and musical activity we were
engaged in. We documented all the code we produced online
(http://swiki.hfbk-hamburg.de:8888/MusicTechnology /819).
The aim was to assess any sense of improvement and
refinement in our live coding. Alberto de Campo’s History
class was used to record the time and content of any

' As a tongue in cheek spur to action, TOPLAP already
proposed a set of Live Coding Grades for tuition
(predominantly written by Alex McLean and Adrian Ward).

interpreted code, providing a mechanism to store the code
improvisation sessions exactly as they unraveled, for later
listening and study from the perspective of an audience. MP3
excerpts are also online for the curious reader.

Both Fredrik and I worked with blank slate coding, starting
from an empty document each day. Whilst we carried out some
preparatory admin outside the hour, the hour of practice
always consisted of a simulated concert performance, so as to
emulate the target situation. Fredrik characterised the practice
as ‘lots of fun’ whilst I often found it more like a chore. For me
it was a great mental effort after a day of research, and not the
release of piano practice, for instance, where I am so much more
highly automatised and able to relax in easy ‘flow’. We both
found quality varying from day to day, though there were
positive experiences amongst more awkward days; I noted in
my open letter to the TOPLAP mailing list ‘I could often reach
a critical point of complexity and breadth of material where
unexpected and interesting results would flow, and there were
enough voices to play with to maintain a musical exploration
simultaneous to the algorithmic exploration.’

We were both still challenged by the formal construction of
the performance, especially by the unavoidable and
problematic delay at the beginning of each set. Attentional
demands were high, and there were compromises between
mathematical thinking and musical mapping especially for
more esoteric treatments of material like the classic ‘3x+1
problem’. Fredrik particularly noted the formal strictures:
‘often just a single 'theme' or process. I feel I'd have to
rehearse a lot more to be able to do abrupt form changes or to
have multiple elements to build up bigger structures over time
with. I sort of got stuck in the A of the ABA form.’

Yet we also both felt we got better at it, by introducing various
shortcuts, by having certain synthesis and algorithmic
composition tricks in the fingers ready for episodes, and just
by sheer repetition on a daily basis.

To present a contrasting example, Julian’s approach was much
more in the vein of interactive programming [13]. On the first
day he joined he commented ‘slow coding is my thing. I'd like
to do live coding for airports’. A correspondence chess player
compared to a timed tournament competitor.

5. PHYSICALITY AND AUTOMATICITY

5.1 The controversy

Programming a computer during a concert performance is a
controversial practice in current live electronic art. This act is
particularly enraging for advocates of the essential role of the
human body in musical expression and interfaces to electronic
music. Live coding also seems to show the (not necessarily
beneficial) asymptote of silent respectful audiences for
Western concert hall fare, translated to an idolization of the
abstruse murmurings of programmers.

It is helpful to first disassociate control and physicality.
Fredrik Olofsson differentiates physical immediacy from a
feeling of musical control in reflecting on his own live coding
practice sessions, arguing that instant feedback is not lacking:
‘In many of the later sessions I felt like I was in total control
over the sounds and where the music was going - at least for
parts of the practising time. Sometimes it was enough
changing just one discrete parameter, other times I kept re-
coding say an LFO to take different shapes - great fun and the

feedback was absolutely quick and direct (although maybe
not as predicable as a real instrument all the time.
Randomness, syntax errors and brain farts added to the
sounds. But humans are brilliant in auto adapting and making
them crazy sounds their own (or quickly find excuses like:
yes I really wanted to distort everything here right now ;-))’

In terms of direct physical control, typing which leads to note
events is trivial (spawning one event for each key tap), but
uninteresting for a live coder (it is very interesting for a
pianist, I'm not against individually manipulated notes!). This
is the only exemplar of note-level control with live coding:
the rest is score-level, of an order unachievable with a
conventional instrument. We can argue about the appropriate
‘score to code’ and ‘conductor to live instrument builder’
analogies for live coding, but I would concede the failure to
specify a musical stream note by note with direct feedback
control.

Yet there are levels of abstraction that don't have an immediate
physical analog, and this is a fundamental brickwall we
shouldn't beat ourselves up against. It is an inherent ‘price’ of
live coding that directness is exchanged for greater abstract
power. The notion of as all-consuming as possible
sensorimotor action is surely not to be privileged as the only
valid state, regardless of the situated physical basis of
cognition. If we define music as requiring a certain
sensorimotor engagement, live coding can be excluded, but
perhaps we wouldn’t want to define music so as to privilege
particular performance practices alone? I would argue that live
coding engages with musical materials within a different
framework of attentional resources, yet is of potentially
equivalent expertise and sense of flow. There are countless
reports of programmers (and by extension live coders) utterly
losing themselves in their activity which should not be
discarded.

I find it particularly intriguing in this context that recent
research [14] posits the deep equivalence of sensorimotor and
cognitive skill acquisition. In a psychological study of
developing physical musicianship Nielsen [10, p.289] notes
that ‘the theory of learning strategies developed in reading,
mathematics and similar learning areas where the cognitive
aspects predominate, can be used in a learning area where
motor performance is critical.” This raises the possibility that
perhaps motor musicianship could learn from live coding?

5.2 Quick physical fixes

I shall deal both seriously and jocularly with this reoccurring
issue of the physical. My current feeling is that live coding
and conventional instrumental control are simply different,
and should be celebrated for that. But as with all such
sweeping categorisations, there is murky artistic fun to be had
in the middle... so as an interlude I present a selection of
(sometimes amoral) ideas that can bring the physical back into
live coding for those who rue its absence.

5.2.1 Physical results after coding (errors lead to
physical punishment)

Beethoven's father would strike his hands with a ruler if he
made mistakes while practising. 1 suggest electric shocks
applied to the programmer, linked to syntax errors or bugs of
certain graded seriousness, with associated degrees of pain. A
full system crash would be matched with death for the
programmer from a loaded pistol, or a drop from a great height

as a trapdoor opens, thus incorporating a real concert
tightrope.

5.2.2 Physical coding

The performer dictates a program in sign language. The
performer plays with some tangible computing interface. The
performer jumps around a symbol mat, etc. Both Amy
Alexander in her Thingee system (with a dancing mat) and
Dave Griffiths with BetaBlocker have explored these issues; in
the latter work, Griffiths uses a joystick controller to struggle
(http://www.pawfal.org/index.php?page=BetaBlocker) with an
assembly language like game interface!

5.2.3 Physical data as an input

The data to be sonified is the posture of the live coder at their
desk, as they unconsciously slump, fidget, fail to move an
eyelid etc.

5.3 Automaticity

Joking or artistic indulgence aside, we can now return to a
subject of great pertinence to practice regimes; the notion of
automaticity inherent in skilled performance. Expert
performance can be characterised by improved representations
for action, often taking advantage of the special co-option of
long term memory, and manifested in neural changes reflecting
our inherent brain plasticity.

Musicians learn to automate many physical actions because
they otherwise could not control everything at once (this is
why they show expanded cerebellums and primary motor
cortex representations in neuro-imaging studies!). But more
abstract cognitive skills can be automated too, though perhaps
not quite to the same degree as perceptual-motor skills;
VanLehn [18] cites a study of the automatisation of subtasks
of the skill of trouble shooting digital circuits, though the
whole skill could not be automatised to the degree of driving a
car.

The attentional demands of live coding would be substantially
benefited by the automatisation of subtasks (I shall not
consider but don’t wish to preclude the possibility of Al
adjoints that might assist automations in live coding, nor
systems designed to hide certain avoidable repetitive tasks).
As noted already, the human learning system is set up to assist
us in automatising both cognitive and sensorimotor tasks if
we only put in enough practice! The aim of this automaticity
would be to free up as many resources as possible to deeper
algorithmic engagement and long term formal musical
planning: an expert ‘performer can choose how and when to
monitor his performance, knowing which aspects can be safely
left to learned programming procedures’ [16, p.102] (Sloboda
means cognitive programming here, but the sentiment
hopefully carries across to live coding).

Nevertheless, it is tempting to go too far in hoping for
automaticity: ‘contrary to the belief that expert performance is
highly automatised, most types of expert performance are
mediated by reportable thoughts involving planning,
reasoning, and anticipation.” [7, p.291]. Because much of this
remains speculative, [suspect we need to put some live coders
in brain scanners.

2 This is potentially problematic due to the large number of
confounds for tasks (i.e. motor noise from typing, language

6. LIVE CODING EXERCISES

Following Czerny, Hanon and Kreutzer, practice exercises are
provided below for live coding of various kinds. These are
intended in the spirit of building up a repertoire. We are in a
fragile state where what works is not entirely known, because it
can seem as if none of us have done sufficient practice to claim
true expertise! Further, some live coders have argued that the
priority is systems development, and that ‘internalising
musical style through regular practice seems the wrong
approach, for me at least. What we should be doing is
reflecting upon our livecoding style, then externalising by
adding functions and operators to our livecoding language of
choice’ [Alex McLean, TOPLAP mailing list communication].
Nevertheless, discussion of practice and development tactics
can be assisted by a base of suggestions.

6.1 Isolation Exercises

Oore [12] considers the importance of reduced practice
exercises for working on specific subtasks. Suggestions for
isolation exercises might include:

Typing practice — (the world record for typing speed currently
stands at an average of 12 characters per second)

Memory — Trying to keep all the processes and details in mind
(especially without any graphical reminder in your live coding
system) may be aided by memory practice exercises

Algorithmic building blocks — From language mechanisms for
encapsulation/recursion/iteration and conditional looping to
specific algorithms for sorting or organising data.

Mathematical constructs — Particular discrete mathematical
problems as riffs to show algorithmic engagement: the 3x+1
problem, the Babylonian Square Root, more number theory
(i.e. sieves, Goldbach summands, prime number algorithms,
finding primitive generators modulo a prime), group theory
(symmetries, permutation chains).

Computer music constructs — Sound synthesis and
algorithmic composition techniques, representations from
non-standard tunings (i.e. Just Intonation to x-limit) to
timbral parametrisations, musical mappings including
knowledge of psychoacoustics and music cognition.

Attention and awareness — Whilst automaticity may assist
better potential resource management, the concentration to
take advantage of this might be profitably practiced.’
Meditation and reflection may also play a part in managing
stress and concert anxiety, though any adrenalin overload
tends to be diminished for experienced performers after
clocking up hours.

All of these exercises are carried out with respect to a specific
language under timing constraints. Whilst conceptual

activation). Programming imagery might be one avenue.
Behavioural studies of attention would also be applicable.

* Whilst avoiding the circumstance of concert virtuoso
performance, Julian Rohrhuber has also commented on the
critical issue of dividing attention: ‘The main difficulty of
live coding I find is to keep aware of the relation between
text and sound - this is a balancing act between the ability to
change and the ability to understand a certain situation’
[personal communication].

‘language-free’ pseudo code study might be of some mental
benefit, and might be associated with certain instrument (read,
language/system) independent scoring practices for code, in
practice, the live coder will have chosen the environment for
which they are preparing just as one might select a violin, a
piano or an augmented tombola.

6.2 Connectivity Exercises

A critical and difficult aspect, much overlooked even in
general algorithmic composition, is that of longer term form;
this was a critical observation of the August practice sessions.
The live coder may find it productive to explore and rehearse
techniques for planning and integrating material over larger
timescales and groupings [16, p.101].

Layering and mixing — Relative placement of multiple voices
in space, spectrum, volume and time. Appropriate construction
of multiple supportive or oppositional layers.

Enveloping — Use of time-varying envelopes and tendency
masks for parameters, or stochastic distributions and the like.

Tension/release — Calculation of future structures in terms of
emotion, surprise and audience anticipation.

The fast swap — Can you quickly adapt to a new scene? As
raised by Alex McLean on the TOPLAP list, one goal,
particularly in performance with acoustic musicians, would be
to gain within perceptual present turnaround (<3 second). This
may have to be achieved by certain innate preprogrammed
facilities of a live coding system (for example, one fast and
effective Wesselian fix already available in an operating
system is the ability to turn off all sound quickly).

React to code — Given existing code, how quickly can you
comprehend and modify? You might also practice starting
from certain recorded positions, so as to practice your
endgame or opening play.

The live coder may also wish to work on particular themes, that
provide unifying structures. These might draw upon certain
mathematical algorithms or computer music ideas, developing
wider applications from those mentioned under isolation
exercises, or indeed work within any accessible artistic style.
An example motif might be that of sonification, perhaps of
audience demographic data or TOPLAP mailing list traffic,
programming language family trees and history of computing,
or recursively, programming language sonification
constructed live to operate on itself.

6.3 Working on Concert Pieces

The form and content of live coding concert works is itself an
open area of investigation; we lack (perhaps fortunately) a rich
institutionalised repertoire such as the piano commands.
Practitioners have nevertheless investigated a number of
improvisation frameworks. One challenging situation is the
‘Blank Slate’, where a live coder attempts to start from an
empty document. Depending on the level and standard
libraries of the programming language itself, and the nature of
any user-prefabricated libraries and facilities in their live
coding system, the actual challenge can very much vary [4, 9].

Whether a major music publishing house would ever be brave
enough to publish them or not (and internet distribution
would remain the viral best tactic), it would be a Cagean
gesture to compose an intently serious series of etudes
providing frameworks for improvisation founded on certain
technical abilities. Just as many classical etudes escape the

constraints of repetitive pedagogical exercises (for instance,
by varying the harmonic basis in inventive ways underneath
the bravura ostinati figurations) so might live coding etudes
reinforce certain isolation exercises but in a manner palatable
to presentable concert works. Without wishing to strain the
western acoustic analogy too far, the sight reading of pseudo
code notation might form one future practice!

Lacking such etudes and works, to cover up current solo
deficiencies, due to the immense cognitive demands, various
settings have been proposed for multi-player collaboration
and competitive scenarios [4, 13, 20], often formulated as
particular games.

Scrabble — points scoring for use of certain code constructs as
if upon a scrabble board, for alternate contributions or
simultaneous construction

Tetris Challenge — each player sets the other the next code
element they must utilise and incorporate into their patch (A
one player version is also plausible, perhaps via preselected
challenges from an independent jury, or algorithmically
generated challenges, as for instance exemplified by Alberto
de Campo's Oracle class for SuperCollider, which randomly
assigns SuperCollider language tokens and can even rate the
coverage of any patch which utilises these)

Chinese whispers/cadaver exquis — Players take it in turn to
modify iterations of a co-authored piece of code, or juxtapose
programs or outputs (within an agreed protocol, perhaps)
blind to the other’s construction.

Root war — A hacker technique in which competitors try to
undermine each other’s systems. In other competitions for
resources, performers might compete for low vs high spectral
occupation (like four hands piano with the duettists fighting
to grab the whole keyboard)

Shared code — A more benevolent situation, even leading to
extreme programming techniques where two coders sit at one
system. Alternatively, a constant remix might be in place
where live coders can take over or at least copy each other’s
patches at any moment, allowing constant convergences and
divergences.

Laptop Battle — An overlapped (perhaps with synchronization
challenges before taking over) or abruptly juxtaposed session;
can turn into a real fight, with competitors taking turns.

Laptop Orchestra/Jam — Hopefully avoiding an insensitive
fight to be heard, but more reasonably a mutually supportative
session of live coders familiar with each other’s playing
styles. With overlapping, the pressure is reduced on
individuals to always code under full realtime responsibility.

Tag team - 2 teams of 2 coders say, where only one on each
team can be live at a time.

Of course, certain improvisation games from the ensemble
works of indeterminacy composers, 60’s text pieces or Zorn’s
game pieces may all provide interesting templates.

7. CONCLUSIONS

Does it undermine live coding to judge it against traditional
instrumental performance, failing to celebrate it for its own
unique take on computer music? What can come out of a
comparison is perhaps a healthy emphasis on the importance
of expertise, as one of the great human abilities, and as more

surely exhibited in current practice by the legions of pianists
than the few live coders. Whether the live coders can show the
discipline to establish their credentials, and thus truly
establish their field, must be a product of time. Fundamentally,
the discipline required of live coders can exceed that of
classical instrumental virtuosi, because the former lack the
automatic sense of ‘history’ and weight of practice procedures
that the latter musicians can draw upon. Thus, the feedback
available to live coders (as for all truly experimental ventures)
is hard to interpret with respect to best learning practice, and
there is an additional confound of systems development
absorbing effort.

To be fair, whilst there are scattered historical precedents, the
modern live coding movement has only been around for seven
years or so (dating it from the first slub and jitlib
performances, though the former in particular have
substantially revised their approaches as the movement has
become more self-aware). And even ten years of informal
practice will not guarantee expertise to rival a concert pianist.
This paper has been an attempt to discuss certain policies of
deliberate practice and the potential of future live coding
concert performances. The stage is waiting for the first true
virtuoso of algorithm.

Right now, I think live coders are equivalent to potentially
talented 11 years olds. Give us seven years of intensive
practice, and come to one of our gigs in 2014. In terms of
expertise, we are perhaps beginning our Middle Years, past the
Early Years of fun (even if nobody played code to us in the
womb nor provided a nurturing home programming
environment), and certainly not yet at the Late Years of
networking and professional careers; the chief psychological
skill demanded of us at this juncture might be commitment to
practice [8]. It would be helpful if there were some live coding
instruction videos available in the local music store with
manifest examples of expert performance to aspire to! But we
currently have no master teachers to guide us, and must risk
the possibility of ineffective practice [8, p.287] whilst
enjoying the sense of open discovery. Since I’ll never get the
time to practice properly if I keep writing papers like this, I
look forward to enrolling in retirement as a mature student at a
future academy of live coding.

8. ACKNOWLEDGMENTS

Many thanks to TOPLAP and the livecode mailing list for
always stimulating discussions on these issues. Additional
individual thanks for communications and live code battles to
Andrew Brown, Andrew Sorensen, Fredrik Olofsson, Ge Wang,
Alex McLean, Dave Griffiths and Julian Rohrhuber. And
thankyou to Thor Magnusson for proof reading and debate.

9. REFERENCES

[1] Andrews, R. Real DJs code live. Wired: Technology News,
6 July 2006.
http://www.wired.com/news/technology/0,71248-0.html

[2] Blackwell, A. and Collins, N. The programming language
as a musical instrument. In Proceedings of PPIG05
(Psychology of Programming Interest Group), 2005.

[3] Brown, A. R. Code jamming. M/C Journal 9, 6, 2006.
http://journal.media-culture.org.au/0612/03-brown.php

[4] Collins, N., McLean, A., Rohrhuber, J., and Ward, A. Live
coding techniques for laptop performance. Organised
Sound, 8, 3 (2003), 321-330.

[5] Deliege, 1., and Sloboda, J. (eds.) Musical Beginnings:
Origins and Development of Musical Competence. Oxford
University Press, New York, 1996.

[6] Green, L. How Popular Musicians Learn. Ashgate,
Burlington, VT, 2002.

[7] Ericsson, K. A., and Lehmann, A. C. Expert and exceptional
performance: evidence of maximal adaptation to task.
Annual Review of Psychology, 47, 1996, 273-305.

[8] MacNamara, A., Holmes, P., and Collins, D. The pathway
to excellence: the role of psychological characteristics in
negotiating the challenges of musical development.
British Journal of Music Education, 23, 2006, 285-302.

[9] McLean, A. Hacking Perl in nightclubs. 2004.
http://www.perl.com/pub/a/2004/08/31/livecode.html

[10] Nielsen, S. G. Learning strategies in instrumental music
practice. British Journal of Music Education, 16, 3
(2006), 275-91.

[11] Norvig, P. Teach Yourself Programming in Ten Years.
2001. http://norvig.com/21-days.html

[12] Oore, S. Learning advanced skills on new instruments (or
practising scales and arpeggios on your NIME). In
Proceedings of NIME , 2005, 60-65

[13] Rohrhuber, J., de Campo, A., Wieser, R. Algorithms today -
notes on language design for just in time programming.
In Proceedings of the International Computer Music
Conference, Barcelona, 2005.

[14] Rosenbaum, D.A., Carlson, R. A., Gilmore, R. O.
Acquisition of intellectual and perceptual-motor skills.
Annual Review of Psychology 52, 2001, 453-70.

[15] Sloboda J.A. Individual differences in music performance.
Trends in Cognitive Sciences, 4, 10 (Oct. 2000), 397-403

[16] Sloboda, J. The Musical Mind: The Cognitive Psychology
of Music. Oxford University Press, New York, 1985 (2004
reprint)

[17] Sorensen, A. Impromptu: an interactive programming
environment for composition and performance. In
Proceedings of the Australasian Computer Music
Conference, 2005, 149-153.

[18] VanLehn, K. Cognitive skill acquisition. Annual Review
of Psychology 47, 1996, 513-39.

[19] Wang, G. and Cook, P. On-the-fly programming: using
code as an expressive musical instrument. In Proceedings
of NIME, 2004.

[20] Ward, A., Rohrhuber, J., Olofsson, F., McLean, A., Griffiths,
D., Collins, N., and Alexander, A. Live algorithm
programming and a temporary organisation for its
promotion. In Proceedings of the README Software Art
Conference, Aarhus, Denmark, 2004.

