
Origins of live coding

April 1, 2014 Origins of live coding

1

Nick Collins
Durham University

Live coding

<INSERT DEFINITION HERE>

April 1, 2014 Origins of live coding

2

Live coding

¤  Art of re-programming; changing your mind about a process
once established

¤  For artistic purposes, often live performance; possible aspects of
theatre, meta-composition

¤  Venues including studios, concert halls, planetariums…

¤  Used to be a bit controversial, now institutionalised?

April 1, 2014

3

Origins of live coding

Other terms…

¤ Live programming

¤  Interactive programming

¤ On-the-fly programming

¤ Performative programming

¤ ascii music…

April 1, 2014 Origins of live coding

4

Or…

¤  Live coding is the realtime collection and coding of
interview data, e.g. in qualitative medical research?

April 1, 2014 Origins of live coding

5

Ancient live coding history

¤  Greek debates?

¤  Ancient algorithmic composition: Guido d’Arezzo c. 1026

¤  Fior vs Tartaglia, 1535

April 1, 2014 Origins of live coding

6

Precedents: improvisation

¤  Music’s natural state?

¤  Generativity of language itself

April 1, 2014 Origins of live coding

7

A literary precedent

¤  Hermann Hesse The Glass Bead Game (1943)

¤  ‘the players, mutually elaborating these processes, threw
these abstract formulas at one another, displaying the
sequences and possibilities of their science.’ (pp. 23-4,
Vintage: London 2000 translated by Richard and Clara
Winston.)

April 1, 2014 Origins of live coding

8

Text pieces

¤  Primarily 1960s

¤  ‘verbal notations’ (Lely and Saunders 2012) ‘word events’
George Brecht

¤  An example of maximal freedom: LaMonte Young
Composition 1960 #3 ‘Announce to the audience when
the piece will begin and end if there is a limit on duration.
It may be of any duration. Then announce that everyone
may do whatever he wishes for the duration of the
composition.’

April 1, 2014 Origins of live coding

9

Text pieces 2: live coding?

¤  Are there any early self-rewriting text scores?

¤  Schooltime Special Cornelius Cardew 1968 contains
possibility to extend itself via new questions

¤  Click Nilson’s precedents (1975, 2012)

¤  Honourable mention though a late arrival:
https://twitter.com/textscoreaday 11 Dec 2012 “#60:
Take an existing text score and profoundly alter its
meaning by changing only one word.”

April 1, 2014 Origins of live coding

10

Games

¤  Nomic, 1982, Peter Suber

¤  Fluxx, Calvinball etc…

April 1, 2014 Origins of live coding

11

Computer science precedents

¤  LISP, c. 1962 implementation as first interpreted
programming language

¤  Use in education via LOGO from 1968 to control virtual
turtles

¤  Smalltalk 1980, FORTH

April 1, 2014 Origins of live coding

12

Live coding history: 1980s

¤  1980s Forth and HMSL. Computer musicians’ frantic
preparations up to performance time (the audience
wander around The Hub)

¤  Ron Kuivila, Water Surface (1985)

April 1, 2014 Origins of live coding

13

:ap asynch-scale
 ::ap
 c d e f g 5$
 ;;ap

;ap

References

1 . Musical Itistriinimt Digitnl Interface Spc+
rficntiorz 1.0. Int’l MIDI Assoc.. North
Hollywood. Calif.. 1983.

2. R.F. Erickson. “The Darms Project: A
Status Report.” Computers and the Hrr-
matiitiesVol.Y.No.6.June 1975.pp.291-
298.

3. L.C. Smith. “Score. A Musician’s Approach
to Computer Music,“ J . Audio Eng. Soc.,
Vol. 20. No. 1. Jan./Feb. 1972. pp. 7-14.

4. D.P. Anderson and R.J. Kuivila. “For-
mula Version 3.4 Reference Manual,”
Tech. Report 911630. Computer Science
Division. Univ. of California at Berke-
ley. May 1991.

5 . D.P. Anderson and R.J. Kuivila. “Con-
tinuous Abstractions for Discrete Event
Languages,” Computer MirsicJ., Vol. 13.
No. 3. Fall 1989. pp. 11-23.

6. D.P. Anderson and R.J. Kuivila, “A Sys-
tem for Computer Music Performance,”
A C‘M Truns. Computer Systems. Vol. 8.
No. 1 , Feb. 1990. pp. 56-82.

7. D. Collinge, “Moxie: A Language for
Computer Music Performance,” Proc.
Inr’l Compiirer Music Conf . Computer
Music Assoc.. San Francisco, 1984. pp.
21 7-220.

Computer Music J . Vol. 8, No. 3. Fall
1984, 32-50.

10. D.P. Anderson. “Synthesizer Manage-
ment Based on Note Priorities.” Proc. Int‘l
Computer Music Conf .. Computer Music
Assoc., San Francisco. 1987, pp. 230-237.

1 1, D.P. Anderson and J . Bilmes, “Concur-
rent Real-Time Music in C++,” Proc.
Usenix C++ Workshop, Berkeley. Calif..
1991, pp. 147-161.

8. B. Schottstaedt, “PLA: A Composer’s
Idea ofa Language,” Computer MrcsicJ..
Vol. 7. No. 1. Winter 1983, pp. 11-20.

9 X Rodet and P Cointe. “Formes Com-
position and Scheduling of Processes.”

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

time-advance
base-pitch
127 1 do

i cycle-size 21 * 0 do
inc + j mod base-pitch + 127 and dup $

loop
loop
drop

maxend
;ap

:ap (tuf-stuf
::gp

280 beats-per-minute
::ap 50 to $location nasty-bass 0 18011 30 2 146 2 4211 tuf ;;ap
::ap 20 to $location piano 1011 18011 50 4 73 4 8411 tuf ;;ap
::ap 80 to $location piano 2511 5011 66 2 146 3 6411 tuf ;;ap
::ap 80 to $location piano 5011 18011 66 2 146 3 6411 tuf ;;ap
::ap 100 to $location vibes 5011 18011 70 4 73 6 12811 tuf ;;ap
::ap 0 to $location xylophone 5011 10011 76 2 146 6 12811 tuf ;;ap
::ap 0 to $location xylophone 10011 18011 76 2 146 3 12811 tuf ;;ap
127 to $location electric-piano 10011 18011 69 3 18 9 25611 tuf

;;gp
;ap

:ap tuf-stuf
::ap” tuf-stuf”

(tuf-stuf
;;ap

;ap

David P. Anderson is an assistant professor
in the Computer Science Division at the
IJniversity of California at Berkeley. In ad-
dition to his work in computer music, he has
done research in distributed operating sys-
tems, software support for digital audio and
video. distributed programming, computer
graphics. and protocol specification.

Anderson received his BA in mathematics
from Wesleyan University, and his MA in
mathematics and MS and PhD in computer
science. all from the University of Wiscon-
sin-Madison.

Ron Kuivila teaches in the Music Depart-
ment at Wesleyan University. He composes
music and designs sound installations to high-
light the unusual electronic instruments he
designs. He pioneered the musical uses of
ultrasound. sound sampling in live perfor-
mance. speech synthesis, and high-voltage
phenomena. He has performed and exhibit-
ed throughout the IJS and Europe.

Kuivila received a BA in music from Wes-
leyan llniversity and an MFA from Mills
College.

Readerscan write to Anderson at the Com-
puter Science Division, Electrical Engineer-
ing and Computer Science Dept., University
of California, Berkeley, C A 94720: or
Kuivila at the Music Department, Wesleyan
University, Middletown, CT 06457.

July 1991 21

Live coding history: c2000

¤  2000, slub start to play in London projecting their screens

¤  Julian Rohrhuber exploits SuperCollider 2 to allow hot-
swapping code in performance

April 1, 2014 Origins of live coding

14

The Tspawn trick (SuperCollider 2)

April 1, 2014 Origins of live coding

15

//run me first
({

 a = TSpawn.ar({arg ts,ec,syn, func; func.value},2,inf, 0.0);

 b = a.source;

 a

}.play;)

//now
b.trigger({Pan2.ar(SinOsc.ar(exprand(220,440),0,0.1), 1.0.rand2)})

(Selected) Chronology 1

¤  2000: ICMC Berlin, networked code passing McCartney/
Rohrhuber

¤  2002: First live coding albums (unreleased)

¤  2003: ChucK

¤  2004: TOPLAP

April 1, 2014 Origins of live coding

16

TOPLAP

April 1, 2014

17

Origins of live coding

TOPLAP

¤  Multiple interpretations

¤  Scene: Feb 15th, 2004, 2am, a smoky bar, Hamburg. An
anagram competition

¤  Livecode mailing list now has 100s of enthusiasts

April 1, 2014 Origins of live coding

18

(Selected) Chronology 2

¤  2005 TOPLAP transmediale

¤  2005: first live code battle

¤  2005: fluxus

¤  2006: aa cell practice

¤  2007: LOSS live code festival

April 1, 2014 Origins of live coding

19

Sorry Ge

April 1, 2014 Origins of live coding

20

Fights

¤  The boxing analogy rears for the World Programming
Federation Fingerweight Belt

¤  Ghent 2005: Coding Bull: McLean vs Collins (match
rigging allegations)

¤  Barcelona 2005: Raging Code: Wang vs Collins (disaster!)

April 1, 2014

21

Origins of live coding

Challenges continue

¤  Nic vs Nick (2-1, New York/London/Mexico City) and The
Ultimate Weapon

¤  Max/MSP in Belgium

¤  Mexican live coding

April 1, 2014 Origins of live coding

22

Practice

¤  The importance of ten years

¤  Practice pacts

¤  No guarantee of effective transference (e.g. ordinary
coding to live coding)

¤  Danger of misplaced practice with new techniques

April 1, 2014 Origins of live coding

23

Selected Chronology (3)

¤  2009: BBC documentary on pub code

¤  2012: Live Notation AHRC: live arts and live coding

¤  2013: Live Coding festival in Karlsruhe

¤  1::year => now

April 1, 2014 Origins of live coding

24

Documentations

¤  2007 A pre-history of live coding

¤  2012 CMJ DVD

¤  2014 Computer Music Journal special issue

April 1, 2014 Origins of live coding

25

Continuing live coding developments

¤  Live coding without computers, including choreography

¤  Live coding orchestras and ensembles

¤  New live coding environments, especially browser and
mobile based

¤  Live coding in computer science education and HCI

April 1, 2014 Origins of live coding

26

Live coding collaborations

¤  Live coding solo is very stressful

¤  Experimentalism is easier with a community support group

¤  But you may need more data projectors

April 1, 2014

27

Origins of live coding

A historical example:
Wrongheaded (2009-2013)

April 1, 2014

28

Origins of live coding

Wrongheaded
(with Matthew Yee-King)

¤ Algorithmic choreography

¤ Laptopists caught between programming work and
external human action

¤ Our lowest moment: Leonardo 44(3) cover stars

!"#$$%&'()$$'!$$)(*)$$*%'+,&$$-#)./$$0"+"$
,"1213)$$4)!.3(+$$,&.#$$*'01)4$$31*'01)4$
'1+$$*&"#+$$("10$$5".+$$4"3-()$$)136$$31'"1$

7$8$9$:$;$<$=$>$?$@$$

.$-$,4)$!$0$&$'A/$($6$1$"BC$#$*$+$3D%EFG

HIJKLMMNOPQRSTUVWXXYYZY$[$\$[[$\\$]!$

+#3)$!.(*)$
^)(("$
_"#(4$

Ouija
code

Zombie
mode

Chalk
explode

April 1, 2014

29

Origins of live coding

Warning!

¤  Look away if you’re squeamish before the next slide

April 1, 2014

30

Origins of live coding

An anatomy theatre

April 1, 2014

31

Origins of live coding

The Gospel According to
Wrongheaded

April 1, 2014 Live coding

32

iPhone live coding

April 1, 2014 Origins of live coding

33

Live programming effectiveness

April 1, 2014 Origins of live coding

34

4. RESULTS
In this section we present results that have led us to con-

clude that live-coding is an effective way to teach an intro-
ductory programming course. Due to limited space, we only
present results from our key findings. Furthermore, there
were no statistical differences between the VARK prefer-
ences both between and within experimental groups (T-test,
p < 0.05). In other words, the relative number of visual,
auditory, read/write, and kinesthetic learners were statisti-
cally similar across all sections of experimental groups and
instructors.

4.1 Grades
For starters, the assignments, exams, and overall grades

from both groups were virtually identical, with the live-
coding group actually performing better on the final project
(e.g., see Figure 1). More specifically, the live-coding group
performed statistically better than the control group on the
final project (T-test, p < 0.05). All other grades were not
statistically different between groups.

When tested using the same official performance met-
rics, live-codings students performed equal if not better than
their control counterparts. Thus, it is safe to say that live-
coding is as good as, if not better than, teaching with static
code. Moreover, our results suggest that live-coding may ac-
tually help students prepare and complete the final project.

Assignments Exams Project Overall

0.8

0.9

1

Av
er

ag
e

G
ra

de

Final Grades

Control
LiveCoding

Figure 1: Final grades computed for both groups. The live-
coding group performed statistically better than the control
on the final project (T-test, p < 0.05).

4.2 Live-Coding to Teach Common Bugs
As indicated in Figure 2, live-coding appears to be an ef-

fective way to teach and correct common introductory pro-
gramming mistakes such as assignment (=) versus equiva-
lence (==). This is because live-coding offers instructors
the flexibility to purposefully write buggy code and make
corrections live in front of students. Watching an instructor
debug code is very helpful to students because it: 1) shows
the process of debugging code and 2) shows common pitfalls
when developing software.

For example, when instructors write code that is concep-
tually new to students (e.g., pass by reference vs. value)
the instructor may purposefully incorporate a bug in the
code (e.g., trying to permanently modify a variable that
was passed by value) without telling students. When the in-

Pre−Course Post−Course
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Co
rre

ct
 R

es
po

ns
es

 (%
)

’IF’ Code Snippet Responses

Control
LiveCoding

Figure 2: The percentage of students (based on experimen-
tal group) who correctly answered the assignment vs. equiv-
alence code snippet questions on the pre and post-course
surveys.

structor tests the code and the bug becomes apparent (e.g.,
the value doesn’t persist), the instructor will go back to
the code and ask for student help to track down the bug
(e.g., using cout to output variable values). Then, when the
bug is found, the instructor will make the necessary cor-
rections (e.g., pass by reference) and recompile / rerun the
code. As the semester progresses, students become more
and more adept at locating these on purpose bugs as the in-
structor types. This attentiveness helps students with their
own code, since they most likely develop a keen awareness
of locating bugs as they type.

In the control (static code) version, the instructor presents
three totally different files: one with a bug, one with debug-
ging statements, and finally the correct solution. Although
the instructor would take ample time asking for student in-
put, testing for the bug, and explaining the mistake, stu-
dents do not seem to grasp the information as well. This
is evident in the results from Figure 2, where the control
group did not perform as well on the assignment vs. logical
equivalence question. One can speculate that live-coding is
simply a better way to hold student attention while showing
code examples.

4.3 Live-Coding and Lecture Preferences
As indicated in Figures 3 and 4, students in the live-coding

group preferred the code examples more than the control
group. In particular, 90% of the live-coding group agreed
that code examples were more educational than the Power-
point slides (as opposed to 67% in the control group). This
is most likely because the code examples in the live-coding
group were more dynamic and interesting for students to
pay attention to. Despite the instructors’ best efforts, pre-
senting static code examples simply does not draw the same
level of attention from students. This is evident from the
types of comments we received on the live-coding survey.

5. CONCLUSION
In this article we shared our research design and results to

assess the effectiveness of live-coding as a teaching method.
Our carefully constructed research design helps insure that
our results are admissible, given that all of the course ma-

Marc J. Rubin (2012)
The Effectiveness of Live-Coding
to Teach Introductory Programming.
SIGCSE’13, March 6–9, 2012,
Denver, Colorado

Consequences

April 1, 2014 Origins of live coding

35

Conclusions

¤  Rewriting the rule book of rule-based art?

¤  So whatever I said, change it

April 1, 2014 Origins of live coding

36

Think you for lastening

April 1, 2014 Origins of live coding

37

