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ABSTRACT

Current research programmes in computer music may
draw from developments in agent technology; music may
provide an excellent test case for agent research. This
paper describes the challenge of building agents for con-
cert performance which allow close and rewarding inter-
action with human musicians. This is easier said than
done; the fantastic abilities of human musicians in fluidity
of action and cultural reference makes for a difficult man-
date. The problem can be cast as that of building an au-
tonomous agent for the (unforgiving) realtime musical en-
vironment. Live music is a challenging domain to model,
with high dimensionality of descriptions and fast learning,
responses and effective anticipation required.

A novel symbolic interactive music system called Im-
provagent is presented as a framework for the testing of
reinforcement learning over dynamic state-action case li-
braries, in a context of MIDI piano improvisation. Re-
inforcement signals are investigated based on the quality
of musical prediction, and on the degree of influence in
interaction. The former is found to be less effective than
baseline methods of assumed stationarity and of simple
nearest neighbour case selection. The latter holds more
promise; an agent may be able to assess the value of an
action in response to an observed state with respect to the
potential for stability, or the promotion of change in future
states, enabling controlled musical interaction.

1. INTRODUCTION

Interactive music systems [25] are software and hardware
systems founded on AI techniques which are designed for
music-making, most typically in live concert performance
combining machine and human musicians. Contemporary
work in this field includes investigations into both ma-
chine listening (realtime audio analysis) and robotics; an
inspiring project in this regard is Ajay Kapur’s MahaDevi-
Bot, a thirteen armed Indian percussionist which can syn-
chronise to sensor input from a human sitarist [19].

Recent years have also seen a number of such projects
intersecting with the agent community, from Belinda Thom’s
Band-out-of-the-Box [30] and Wulfhorst and colleagues’
Virtual Musical MultiAgent System [32], to the Musical
Acts - Musical Agents architecture [23], OMax [1] and
Arne Eigenfeldt’s Drum Circle [10]. Indeed, agent tech-
nology has a potential to influence the general field of
computer music, as discussed by Dahlstedt and McBur-

ney [6], a composer and agent researcher who have col-
laborated on generative music software. Perhaps the earli-
est explicit live musical agent work is that of Peter Beyls,
whose 1988 description of Oscar (Oscillator Artist) [3]
characterised the system as an autonomous agent. 1

A goal of this research is the realisation of autonomous
agents for interactive music, which can at a minimum op-
erate independently of composer intervention during per-
formance, though they may not be so independent of the
composer’s programming. Behavioural autonomy in a con-
cert and rehearsal situation (self sufficiency of action) is
sought whenever the agent is switched on, but constitutive
autonomy (continuity of existence at the scale of everyday
life) is not expected [12]. To quickly align with musical
demands, techniques for fast adaptation to musical situa-
tions must be explored.

This paper will proceed by more closely examining
work to date on musical agents. Because machine learning
is identified as a shortcoming of much existing work, we
will investigate the combination of music and reinforce-
ment learning techniques adopted by the agent commu-
nity. A new MIDI based system will be described, in-
tended as a testbed for experiments in online adaptation.

2. AGENT ARCHITECTURES FOR MUSIC

A natural viewpoint in applying agent metaphors to mu-
sic is to place the agents at the level of individual mu-
sicians such that each concert participant is a single au-
tonomous agent. This will be the primary level at which
agency is discussed in this paper, but individual artificial
musicians as multiagent systems have also been consid-
ered. Minsky’s society of mind metaphor has been applied
by Robert Rowe particularly in his Cypher project; the
Meta-Cypher includes multiple listener and player agents
as well as a Meta-Listener [26, pp. 310-15]. In the set-
ting of artificial life, Jonathan Impett has demonstrated
the complex emergent musical interaction possible with
swarm intelligence [18]. But multiagent architectures within
individual artificial musicians have usually been notional,
for instance, as simple active hypotheses in computational
beat tracking [13].

Where systems have sought to explore flexible interac-
tion with human musicians, style specific cultural conven-
tions and innate human musical behaviours (such as syn-
chronisation abilities) have provided severe challenges for

1 Though it fails to qualify under more restrictive definitions [4].



researchers. In an analysis of the state of the art interac-
tive music systems were characterised with respect to tax-
onomies of agent systems [4]. Building an autonomous
agent for live performance, with as much musical auton-
omy and flexibility as a human performer, was found to be
restricted in current generation systems by insufficient ap-
propriate musical training and pro-activeness. Arguably,
current generation musical agents cannot meet strong con-
ditions of agency as outlined by Wooldridge and Jennings
[31]; this may be arguable in turn for so many systems,
situated on a continuum from object to human agent.

Indeed, much research 2 has been guilty of anthropo-
morphism, as pointed out by Wolfhurst et al [32], who
themselves proceed to make claims for ‘leadership’ and
‘happiness’ amongst their musical agents, and describe
an agent component which is essentially a MIDI device
manager. In the context of rhythmic agents in a ‘drum
circle’ [10] many parameters are described in terms of so-
cial music making, the agents being ‘confident’ or ‘mis-
chievous’. Beyl’s Oscar is somewhat anthropomorphised
in his description of its ‘personal opinion’ [3], and there
is a two dimensional state for the system on axes of inter-
est (from bored to aroused) and stimulation (from under
to over stimulation) based on the pitch content of work-
ing memory. Such descriptors are useful indicators of the
designer’s intention, and music is an often ambiguous and
always social art that naturally gives rise to such circum-
stances of intentional stance; but semantic musical labels
from the researcher will not necessarily lead to enhanced
artificial intelligence.

An agent perspective may be a beneficial stance to adopt
in music AI. A clear exemplar of the intersection of music
modelling and agent technology is the MAMA architec-
ture described by Murray-Rust and co-authors [23], which
proposes a musical agent communication protocol of ‘Mu-
sical Acts’ analogous to ‘Speech Acts’. Multiple commu-
nication channels are theorised, covering both musical and
extra-musical gesture. This structure is applied in a de-
scription of interactions for the classic minimalist work In
C, to allow generative performances by musical agents of
the work within the bounds of its rule scheme. This sys-
tem is not a learning system, however, and we now turn to
the issues of machine learning in music.

3. MUSICAL AGENTS WHICH LEARN

The extensive practice regimes of human musicians, whether
the obsessive study of popular musicians [14] or conser-
vatoire training regimes of thousands of hours [7], point
to a critical role for machine learning in machine musi-
cianship. Though David Cope claims there are ‘few pub-
lished examples of computational learning in music’ [5,
p. 181] in his most recent book, there are many examples
of machine learning systems which he fails to cite, most
notably in the contemporary research area of music infor-
mation retrieval. The research interest of MIR tends to be

2 I am not exempt from such criticism, having used rather anthropo-
morphic parameter names for the Free Improvisation Simulation [4]

directed most strongly towards the semantic web, with the
general audio consumer in mind; our research is directed
most at the general practising musician.

Whilst restricted to the limited domain of 4 bar call and
response against an imposed metronome, Belinda Thom’s
work on ‘improvisational music companionship’ [30] ap-
plies machine learning technology in specialising an in-
teraction to an individual musician. By post-session anal-
ysis of material collected during rehearsal, BoB can adapt
to a given player , collating (by unsupervised clustering
of data) a set of playing modes meant to represent differ-
ent styles of performance. Thom’s investigation of ma-
chine learning techniques that might be applicable to the
‘sparse’ material offered in musical dialogue is notewor-
thy, and she even contends that ‘perhaps sparsity can be
used to model musical creativity’. This is probably under-
estimating the amount of practice a musician has engaged
in through their life 3 , though it is a pragmatic approach to
train an interactive system, and the only situation encoun-
tered in immediate short-term interactive applications.

Perhaps the most advanced work to date in the emu-
lation of human musicianship is that of Hamanaka and
collaborators [15]. They train virtual players from the
performance of a trio of human guitarists, learning in-
dependent models for reaction (within ensemble playing
behaviour), phrase (a database of individual musical ma-
terials) and groove (timing preference). A particular of-
fline algorithm accompanies each of these, respectively,
radial basis function networks mapping between subjec-
tively assigned impression and intention spaces, Voronoi
diagrams for phrase segmentation, and a HMM for timing
parameters. The authors effectively tackle the problem of
sparse data for learning, but are somewhat locked to the
source data for their experiments: that initially gleaned
from the human guitarists. Aspects of their conception
have influenced this paper and the system described be-
low, and whilst they treat imitation more than generalisa-
tion and learning, the set-up and vision they describe is
extremely appealing. For bootstrapping especially, their
solution may provide excellent techniques, but it remains
untested in more general applications.

There is a question of the role of such systems; is it
realistic to expect an interactive music system to learn
from the ground up during concerts? At the very least,
musical knowledge is built into such ‘general’ systems
in their internal representations and rules. Human mu-
sicians have usually been bootstrapped through all sorts
of musical educational experiences before they step out
at Carnegie Hall. Most learning systems will be trained
offline, that is, on pre-existing corpora, with appropriate
ground truth for supervised learning. Musicianship pro-
vides an interesting challenge in combining some amount
of bootstrapping, unsupervised learning, and online tu-
ition and concert experience.

Some researchers have approached the demanding task
of within concert learning by variable length Markov mod-
els, which can develop quickly in realtime interaction, the

3 7000 hours or so for a professional standard violinist by age 18 [7]



Continuator being a famous example [24]; an alternative is
the efficient Factor Oracle algorithm [1]. Such rote learn-
ing with generalisation from pattern matching fits well to
the demands of immediate response, but has been criti-
cised by François Pachet himself as ‘reflexive’ rather than
‘flexible’ music making; these algorithms have more lim-
ited higher level musical facility.

4. REINFORCEMENT LEARNING AND MUSIC

The machine learning technique of reinforcement learning
[28] has many links to the needs of realtime agent systems,
due to its inherent approach to complex learning environ-
ments. Only a few authors have previously considered the
application of these techniques to computer music.

Franklin and Manfredi [11] study actor-critic reinforce-
ment learning, using a nonlinear recurrent neural network
for note generation in a context of jazz improvisation. The
reinforcement signal is derived from eight hand-written
rules specifying a basic jazz music theory. They also pro-
vide some limited results on three tasks concerning sim-
plified musical sequences.

In the closing stages of their paper on the OMax sys-
tem, Assayag and colleagues [1] discuss an experimental
application of discrete state-action reinforcement learning
to weight links in the Factor Oracle algorithm. When this
takes place from live interaction, positive reinforcement
corresponds to extra attention to certain musical materi-
als (the improviser having no way however to show any
dislike of the material generated by the algorithm). A
‘self-listening’ mode is also investigated where the sys-
tem feeds back its generated material to itself, this time
with negative reinforcement so as to increase variety in
productions.

Reinforcement learning requires a musically salient no-
tion of reward, and as in general research into musical
agents, it is essential to derive some measure of the qual-
ity of musical actions for particular situations. A num-
ber of candidates have been proposed; such functions have
been variously defined as fitness functions for genetic al-
gorithms, utility measures, or reinforcement signals. Murray-
Rust et al. [23] list three feedback measures on agent per-
formance:

1. Matching internal goals (for example, the imposi-
tion of a rule set as per [11])

2. The appreciation of fellow participants (and further,
of a general audience and critical authorities)

3. Memetic success; the take-up of the agent’s musical
ideas by others (within a concert and a culture)

The second of these is difficult to measure during a con-
cert, for the entry of values at a computer interface may
disrupt the flow of performance for a performer; an in-
dependent observer logging state may not have access to
a musician’s real state of mind (post concert analysis is
even more troublesome, as Thom notes concerning the
difficulty of retrospective inquiry into improvisation [30]).

Camera tracking of facial expression and attention, as well
as physiological monitors such as galvanic skin response
sensors, might provide reward measurements mirroring
instantaneous engagement, but have not been explored.

Variations on these ideas might look specifically at mu-
sical phenomena, for instance, comparing individuals to
an ensemble by the metrical synchronisation of a performer
within an ensemble, the reconciliation of pitch materials
to the overall harmonic consensus or timbral appropriate-
ness. In applying the third criteria above, measures of the
information content and musical similarity of statements
and answers might seek to explore how ‘inspiring’ given
productions were. But it should be noted that musical
goals and ambiguity can vary widely in different stylistic
settings; for example, the short-term alliances and disso-
lutions of free improvisation as well as the rapid turnover
of material can make measurement difficult.

Having seen some of the potential pitfalls, a pragmatic
approach might be to use predictive success as the reward
signal itself. Musical interaction is inherently based on
anticipation [17]; human musicians cannot react within
milliseconds, but can adapt within half a second to two
seconds by reconfiguring their expectancy field. Given
the current state of the musical environment, the machine
musician can posit a prediction of the next state (on which
its own scheduled productions will draw). After the next
state measurement, the system is in a position to assess
how successful this prediction was; further, the timescale
of this feedback fits the online and local nature of the task.

The second reinforcement signal investigated in this
paper is similar to the third listed above, though at a shorter
timescale and with less high level a description; it con-
cerns the perceived effect on the position in state space of
the action taken. How much can an agent influence the
current status quo through the choice of action?

Before we move onto a specific system, however, it
must be acknowledged that reinforcement learning itself
has been criticised as too slow a process for online adapta-
tion, particularly in situations with large parameter spaces.

Investigating variants of reinforcement learning, Din-
erstein and colleagues [8, 9] provide algorithms tailored
to the needs of fast adaptation for autonomous game char-
acters. In the treatment below, the Sarsa(λ) algorithm for
discrete state-action spaces is the primary technique used,
but the dynamism of recording case libraries and compar-
ison with nearest neighbour methods is motivated by their
ideas, as a pragmatic tackling of the high dimensional in-
teractive music domain.

5. IMPROVAGENT

This section of the paper will describe a system which has
provided a prototype for reinforcement learning experi-
ments. The working title of the system is Improvagent,
for ‘improvisation agent’, or more hopefully, ‘improving
agent’, describing a musical agent which seeks to improve
itself through constant learning. Whilst many of this au-
thors’ previous interactive music systems have been audio



analysis based [4], a symbolic MIDI system was designed
for this research project, so as to more directly tackle the
essential questions of agency and learning. Since the MIDI
specification is most suited to piano, Improvagent com-
bines a human pianist with a virtual player. The agent
is equipped for both realtime learning during interaction
with a human pianist, and non-realtime learning from MIDI
files (especially for boot strapping and for non-interactive
testing), as an online reinforcement learning process in
both cases.

A paradigmatic and challenging case for interactive mu-
sic systems is that of improvisation. It is no longer nec-
essary even in musicological circles to defend improvi-
sation as a practice; for instance, Derek Bailey [2] and
George Lewis [20] have already done an admirable job
here, and the ubiquity of improvisation in human musical
culture is now readily acknowledged. However, grandly
claiming improvisation as the domain of a musical agent
is to gloss over the wide variety of improvisational prac-
tice. Through the assumptions of the MIDI protocol and
88 keyed 12TET piano, to Western music theory notions
of key and metre that will underlie the working version
of Improvagent, the scope of the system is circumscribed.
Restrictions on the current abilities of the system will be
readily acknowledged, and Improvagent stands as much
as anything as a test case for the adaptation mechanisms.

The timescale of operation of this system is designed to
fit human processing constraints of perceptual present and
reaction time. Half second frames form the basic block
of processing, though with reference to a wider history
of the last two seconds (four frames at this rate) for such
measures as key and metre. In the current working sys-
tem, computational beat tracking is side stepped; instead
a tempo of 120bpm is imposed (so that a beat exactly
matches the frame period). This is a practical step taken
to avoid unnecessary complexity in this study, and the ex-
tension to the case of beat tracking can be envisaged.

Over the course of a frame, all MIDI note events are
stored. Three viewpoints on the current frame are main-
tained in line with realtime data acquisition; a list of new
onsets, a list of note off events, and a list of active MIDI
notes at the end of each frame. Even with the assumption
of an imposed metronome, there are issues of chord onset
asynchrony and quantisation. Experiments in measuring
chord onset asynchrony observed inter chord note interval
of around 5 msec in tight playing, whereas looser playing
allowed up to 30 msec spread (more for truly sloppy play-
ing!). To accommodate this, events within 30 msec of the
end of a frame are deferred to the next frame, as anticipa-
tions of the beat. Any further chord tones close to these
(within 30 msec of another note in the closing region) are
themselves deferred in turn. Such deferral, alongside the
tracking of MIDI off messages and active notes, is impor-
tant to accurate measurement of harmonic content.

5.1. Feature extraction and proximity measure

The foundation of Improvagent is the treatment of succes-
sive frames as successive observed environmental states.

Parameter Implementation Values
num onsets classes: 0, 1-2, 3-4, 5-6, 7+ 0-4
key type major, minor or ‘neutral’ 0-2
transpose transposition of original pitch materials 0-11
keydist conflict of key calculated over the win-

dow versus the local key over the frame
0.0 to 1.0

register type harpsichord, full piano, just bass, just
top

0-3

max pitch highest appearing note 21-108
min pitch lowest appearing note 21-108
groove straight or swung 0 or 1
lead or lag mean expressive deviation ahead or be-

hind beat
float

active notes active notes during the frame list
new onsets notes starting during the frame list
max vel highest velocity value in frame 0.0 to 1.0
action assigned to following state or tested ac-

tion
pointer

value rating of this state-action pair 0.0 to 1.0
framestart original recorded time of state time
p c profile pitch class profile over current window 12 floats
q profile allocation of onsets to quantisation posi-

tions weighted by velocity
4 floats

expressive
deviation

sum of absolute deviations from quan-
tised rhythm over window

float

density notes active, new onsets per frame 2 integers
register tessitura, median pitch 2 integers

Table 1. Table of state data and features

Cases are typically derived from pairs of a state and its
successor, assuming that the human provides a model of
useful actions [8]. Table 1 details the program data as-
sociated with a state. The table is broken down into four
sections; the first corresponds to parameters used to parti-
tion the set of states so as to reduce computational load in
search, as detailed below. The second concerns features
which are stored and may be used in the generation of re-
sponse material, but which essentially come along for the
ride. The third specifies parameters for the case. The fi-
nal division concerns those features used directly in the
proximity measure for matching states. For the proximity
measure, relevant features are normalised to an equivalent
0.0 to 1.0 parameter range.

Key extraction [26] used a comparison to each possible
transposition of templates for major, minor and various
‘neutral’ chord types (whole tone and chromatic aggregate
scales). The highest scoring match to the input pitch class
profile gave the key type and transposition. The pitch class
profile itself took account of proportional durations and
amplitudes of notes within frames in weighting individual
note contribution.

Beat extraction is itself trivial in the case of an im-
posed metronome, but evaluating expressive timing com-
pares the observed onset positions within the window to a
quantisation template for two groove patterns: straight and
swung semiquavers. The template with the smallest over-
all total time deviations in seconds was selected as best
fitting the current evidence, and the groove and deviation
features then follow directly; the lead/lag parameter is a
measure of the mean error of quantised location to origi-
nal timing, and gives some indication of playing ahead or



behind of the beat.
A proximity measure between states is defined by a Eu-

clidean distance over a feature vector of the final features
in the table (with user specifiable weightings of the dimen-
sions; equal weighting for experiments herein). For the
case of comparing the pitch class profiles of states s and t
(each vectors over the 12 chromatic pitch classes) the dis-
tance contribution from this dimension is the square of the
Manhattan metric between profile vectors:

dist(s, t) = min(
11∑

i=0

|pcps(i)−pcpt(i)|, 40)∗0.025 (1)

where pcp is the unnormalised pitch class profile formed
over the window, and the minimum operation keeps things
constrained for cases of very high note densities as com-
pared to normal operation.

The set of features described here are hardly exhaus-
tive, and one might immediately investigate further con-
tour and pitch interval representations (perhaps a set of
measures between onsets separated by n notes, for n = 1
to numonsets-1), which maintain more of a sense of strict
temporal ordering. Indeed, measures of melodic similar-
ity of actual note sequences might replace Euclidean dis-
tance between feature vectors in the proximity measure
[16], following more complicated case-based reasoning
systems [22, p. 240]. A lot depends on the level of ab-
straction sought for the musical system in its engagement.

Whilst this prototype treats the case of discrete MIDI
events, aspects of this investigation may be pertinent to au-
dio based interactive music systems, where features may
be sampled at a higher rate across frames; again, the selec-
tion of state data may include features for state proximity
measurement, variables for learning and generation, and
some discrete factors to assist the breaking down of the
size of the problem domain.

5.2. Case storage

One approach to controlling the explosion of dimensions
is to split the total database into a number of parallel case
libraries, keyed by important musical parameters. The
current system uses three key categories (major, minor and
neutral) and five onset count categories (0, 1-2, 3-4, 5-6,
7+), for a total of 15 parallel databases.

Search for matches is therefore constrained from the
outset by these categories accurately reflecting the situ-
ation, but does not have to take place over every previ-
ously observed case. Furthermore, cases are never stored
if both the state and following state are themselves empty
of events; this avoids the accumulation of cases when the
human is not playing.

The working hard limit on the number of cases per
database is 1000, corresponding to 8 minutes 20 seconds
of material, giving an overall memory for the system of
around two hours, assuming even distribution amongst the
15 parallel case libraries. There is a rule for replacement,
invoked if the number of existing cases in the target database
is already at the limit. The state with maximum score is

determined with respect to a sum of three evenly weighted
factors of age, inverse distance to the incoming state, and
inverse value. This procedure (with the addition of the
value) follows Dinerstein and Egbert [8].

Counts of the accumulation of cases for a typical live
training run over 1359 recorded frames (over 11 minutes
of playing, not including unrecorded double zero state-
actions) follow: [ 30, 78, 360, 175, 51, 14, 29, 92, 80,
60, 28, 47, 88, 102, 125 ]. The largest peaks correspond
here to major key material with 3-6 new note onsets per
frame; the take-up is non-uniform, but still utilises each li-
brary. Certain categories might be granted greater storage,
though the distribution can vary widely as well between
runs depending on what material is performed (different
results are obtained for contemporary music improvisa-
tion and romantic and later MIDI files!). Further, the hard
limit is of the cost of search as well as overall memory
constraints.

5.3. Reinforcement learning algorithms

Fast adaptation demands the fast assimilation of musical
ideas by the system; state-action pairs are dynamically
added with each successive frame. Because the possible
cases are not fixed in advance, a k-nearest neighbours al-
gorithm ensures a dynamic (lazy learning) approach, fol-
lowing Dinerstein and Egbert [8]. The operational algo-
rithms of Improvagent use a k-NN linear search at their
heart, a search which cannot be improved by a kD-tree
since the database is itself being continually updated. Value
guides policy by determining the selection of the highest
value case amongst the k nearest neighbours of the query
state; 4 updating value is accomplished by reinforcement
learning steps.

Variants of Sarsa(λ) were utilised over the acquired
cases (state-action pairs) to investigate musically moti-
vated reinforcement learning with respect to two poten-
tial reinforcement signals. The first of these, ‘prediction’,
operates by immediate feedback on observing a succes-
sor state; the second, ‘consequence’ is driven by the next
but one state. In the central loop of both algorithms, MIDI
note data in the current frame is parsed, the enclosing win-
dow updated, and musical features are extracted as per
section 5.1. At this point the two algorithms differ in their
detail due to the different delays before reward calcula-
tion.

5.3.1. Prediction

1. Create new state s’ from features extracted in frame

2. Match s’ using k-nearest neighbours (with respect to a
feature based proximity function) within an existing state
database; store k predictions of next state

3. Top rated prediction is new action a’

4. Compare prediction a from last frame s to observation s’
(Sarsa reinforcement of s1)

4 Additional options would be to form interpolants of the neighbours
by mean or median [8, 9], with distance and value weighting.



5. Compare other predictions ai from last frame s to obser-
vation s’ (immediate reward update of si)

6. Update last frame state s with action s’ and add to database
of state-action cases, removing old state-action pairs if
necessary

7. Store new state s’ by assigning s = s’

8. Generate machine output based on prediction a’

This algorithm is a pragmatic combination of a number
of ideas; the use of k-nearest neighbours and the update of
the value of multiple states follows [8], feature matching
is related in audio research to concatenative synthesis [27]
and the Sarsa algorithm is described in [28].

In Improvagent, Sarsa(λ) updates value for a case v(si, a):

v(si, a) = v(si, a)+α((1.0−d(a, s′))+γv(s′
1, a

′)−v(si, a))
(2)

where d(s, t) is the proximity measure between feature
vectors. The reward thus favours a close proximity of
prediction and new observed state. Eligibility traces are
maintained in a list holding the last ten touched cases for
further back updates; various values of the parameters were
investigated, defaults being ε = 0.1, λ = 0.9, α = 0.5,
γ = 0.5. Experiments were also carried out with ‘side
predictions’ by retaining the top K neighbours as addi-
tional predictions; a recursive step is not justified here for
any update, so γ and λ were zero.

Figure 1 plots an observed state succession s → s′ →
s′′ and three nearest neighbours s1 to s3 of s in two dimen-
sions; such implicit paths in the feature space continue on
for the sarsa estimate (with s′1 → a′) in particular. In
this predictive situation, a1 as the primary prediction is
less successful than a2 from a side prediction; v2 will be
boosted, whilst v1 is estimated downwards except for the
additional sarsa bonus for v(s′, a′).

Figure 1. Nearest neighbours and predictions for ob-
served s and s′

Convergence properties of both algorithms were ap-
proached empirically, because of the k-NN and dynamic
case aquisition potentially interfering with known conver-
gence properties of discrete on-policy Sarsa(λ). Runs of
the system were carried out in which each case maintained
a record of when and how much it had been updated over
the course of interaction; counts, mean distance from state
to current observed state and mean change in value were
tracked over state-action cases.

Despite any early bias with a small number of cases
spread out in feature space, wild oscillation of values was
not observed. However, the musical setting is the primary
consideration, and a number of factors count against gen-
eral convergence, not least of which is the wilful explo-
ration of the human musician; just because a particular
state led to another earlier in the improvisation does not
guarantee exact repetitions! We would expect, however, a
certain amount of repetition appropriate to the style.

Figure 2. Error of prediction algorithm against baseline
algorithms

The primary goal is an accurate prediction of the next
state; if the state is rarely encountered, so be it, and the
rare state may be deallocated in favour of newer or more
valued states. This is absolutely fine and natural; we don’t
keep so much in our memories that wasn’t successful or
useful! If there is a worry over maintaining some repre-
sentative rarer states, a periodic assessment of divergence
and coverage in the state space might be carried out, and
certain states ear marked for preservation. Yet, the poten-
tial state space is so much larger than any encountered in
practice (due as always to music’s innate combinatorial-
ity) that a sparse set of representatives are potentially all
that can be maintained.

We have discussed the algorithm here at length to demon-
strate how a practical musical system might go about util-
ising reinforcement learning. Unfortunately, one flaw re-
mains: there are better predictors of immediate succes-
sor state than the reinforcement learning algorithm itself.
The baseline comparators were first, using the current ob-
served state as the prediction (assumption of stationarity)
and second, using the nearest neighbour in the case li-
brary without following the highest value. Figure 2 gives
a counter example over training by seven MIDI files, with
an accumulated case library of 1302 frames (10 minutes
51 seconds). Similar results were seen for live improvisa-
tion, with the stationary assumption often edging out the
simple nearest neighbour in sessions. This demonstration
undermines the prediction algorithm in its current form
and motivates a new twist.

5.3.2. Consequence

In an attempt to leverage the technical mechanisms, but
provide a more effective measure for interactive improvi-
sation, additional delay between act and reward was intro-



Figure 3. State-action cases and propagation of informa-
tion for consequence assessment

duced. The reinforcement signal now measures the reper-
cussions or consequences of a musical action in response
to an observed state; that is, it considers a single moment
of interaction between human player and machine agent.
The algorithm is:

1. Create new state s” from features extracted in frame

2. Match s” to k-nearest neighbours (with respect to a fea-
ture based proximity function) within an existing case li-
brary

3. Top value case state s1” provides new action a”

4. Compare frame s to observation s” and update v(s1,a)
(Sarsa(λ) reinforcement with eligibility traces)

5. Add (s,s’) to the database of state-action cases, removing
old state-action pairs if necessary

6. Advance states assigning s’ = s”, s=s’

7. Generate machine output for upcoming frame s”’ based
on prediction a”

Three successive states are involved; given s, an action
a is selected which runs against s’, the moment of inter-
action; s” is then measured against s. The algorithm thus
compares the actual change against a baseline of stationar-
ity; the underlying assumption is that the players are pay-
ing attention to each other, and action a can be assessed as
promoting either change or stasis if following the context
state s. Intermediate state s’ is assumed to be underway
before the player has time to react to the machine action
a; the full consequences are only really apparent by state
s”. Figure 3 expresses this in diagram form; the middle
line of states s1, s1’, s1” are those winning states from the
case library (highest value except for ε-greedy random se-
lection). The comparison of s” to s is shown at the bottom
of the figure, and the rising line back to state s1’ indicates
the update to the value. The sarsa(λ) update to value for
the case v(s1, a) is now:

v(s1, a) = v(s1, a)+α(d(s, s′′)+γv(s′′
1 , a′′)−v(s1, a))

(3)
so that the reward is a measure of state change; stationary
behaviour corresponds to zero reward. Eligibility traces
are maintained as before, but only one action can be eval-
uated at a time and there are no side predictions or other
simulations.

This algorithm provides a mechanism for measuring
the machine’s influence in interaction, which can be learnt
during interaction; indeed, it is intimately bound to inter-
active settings itself, and makes no sense in training over

fixed and irresponsive MIDI Files. In testing, the set of
features and proximity measure chosen, as well as the
interactions observed, were a factor in how well overall
the system anticipated the consequences of an action in a
given situation. Further evaluation is needed, especially
over alternative timescales of consequence, as well as al-
gorithm variants.

5.4. Material generation

Because the set of features and recorded data for a frame
provides both abstract and exact description of the events
of that frame, there is a choice of response. For many
interactive music systems, following the gist of density
and pitch material data might be appropriate. In proto-
typing, Improvagent was set to playback the stored notes
precisely, or to select from a subset of active notes. Mate-
rial was thus scheduled in advance of the new beat.

An optional facility was added to play back a chain of
states in a row (by following successive action pointers,
which replay a sequence in time). For prediction this de-
pended on the value of the primary prediction, as a confi-
dence relative to the second best prediction and proximity
of states 5 .

Conventional Sarsa(λ) updates cannot take place dur-
ing longer sequence playback; playback is always cur-
tailed if the cumulative error of match between sequence
location and current observation exceeds a constant, if a
predetermined number of steps are exceeded, or if a state
has no valid action (which may occur if cases have been
replaced in the libraries). Such longer term material gen-
eration raises questions of the negotiation of intention be-
tween human player and machine.

6. DISCUSSION

The choice of musical representation has a critical effect
upon the system. Improvagent calculates a number of per-
tinent musical features, but has no wider ability in seg-
mentation (to separate out voices and phrases), longer time
windows and hyper-metrical information, stylistic analy-
sis and the automatic recognition of and specialisation for
certain genres, or indeed, physiological data on human
pianism. Yet even though the musical model has weak-
nesses, the recognition system relies on similar musical
materials mapping to similar states; triplet figures mistak-
enly taken under the swung groove will happen relatively
consistently with respect to such categorisation. If har-
monic materials are octotonic, and might be classified as
neutral or minor, the most important thing is that the map-
ping is dependable, such that further examples of such ma-
terials will end up in roughly the same place; continuity of
state-action underlies the stable learning of value.

Alternative reinforcement learning mechanisms (i.e.,
function approximation), higher level actions and multi-
layered learning [8] have not been broached in this pa-

5 It may be possible to explore self-simulation by combining predic-
tion of a player’s responses and cumulative assessment of consequence



per but are definite targets of future study. In the musi-
cal setting, one might ask when the human player would
like support, and when stimulation/opposition? What are
the dynamics of systems of multiple virtual players, each
of which can learn during the encounter? How might
improvisation structures such as John Zorn’s 1984 game
piece Cobra be instantiated? Such high level negotiation
has been explored by the MAMA system [23] but is not
straight forward to formalise at the level of task and goal
selection as per [8]. It is expected though that there may be
dividends in the application of state-action-reward meth-
ods in modelling such exchanges; measurements of mu-
tual influence and the consequence of an action within a
group setting are future areas of investigation.

7. CONCLUSIONS

Live music is a domain which can provide an imposing
test of agent technology. This paper considered a sys-
tem for online value attribution via reinforcement learn-
ing to dynamically acquired state-action cases, founded on
musical feature spaces. Concertising demands fast adap-
tation, and whilst boot-strapping and careful representa-
tional choices can simulate practice, runtime value assign-
ment and learning assists specialisation to and accommo-
dation of human musicianship by machines. It is inter-
esting to speculate on the needs of musical agents which
might train with their human owners over multiple prac-
tice sessions and performances.

Whilst the issue of other modalities of communication
than sound have not been tackled in this paper, further
directions for systems emulating musicians are found in
embodied virtual agents, which take advantage of senses
other than audio (such as video feeds) to gauge an inter-
locuter’s intentions, and are typically instantiated as 3-
D rendered characterisations evidencing behaviours [29,
21]. The next stageis to consider higher level musical and
extra-musical intention; undoubtedly, live musical agents
which learn are a stimulating endeavour providing much
to consider for the computer music community.
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