
SCMIR: A SUPERCOLLIDER MUSIC INFORMATION RETRIEVAL
LIBRARY

Nick Collins

Department of Informatics
University of Sussex, Brighton, UK
N.Collins@sussex.ac.uk

ABSTRACT

The SuperCollider Music Information Retrieval (SCMIR)
library is an extension set for the SuperCollider audio pro-
gramming language that facilitates automatic analysis of
audio files. The framework supports common music in-
formation retrieval technologies, including for batch pro-
cessing across sound file collections. The library takes ad-
vantage of scsynth’s Non-Real-Time mode and machine
listening plug-ins for fast feature extraction, as well as
SuperCollider language invocation of auxiliary native ex-
ternals for some intensive calculations. Features can be
normalized/standardized, grouped by detected beat and
onset locations as well as arbitrary imposed segmenta-
tions. Similarity matrices support multiple distance met-
rics, novelty curve calculation through checkerboard ker-
nel, and dynamic time warping best match path discov-
ery. Applications include automatic structure analysis of
pieces, inter-piece comparison, and as a front-end to ma-
chine learning operations via SC classes or Weka.

1. INTRODUCTION

The field of Music Information Retrieval (MIR) [6, 7,
11, 14, 2, 4] has grown extensively in the last decade, pro-
viding a new impetus to research and commerce in com-
puter music. MIR research is contributing new insights to
sound analysis and the handling of large audio data sets,
and a healthy research effort here can have bonuses for
interactive music system designers.

A number of support tools for MIR researchers have
been created and used for many projects. These include
MATLAB libraries such as MIRToolbox [8], the C++ code-
bases of Marsyas [15] and the C Library for Audio and
Music (CLAM) [1], as well as the jMIR Java libraries [10]
and open source tools developed for the OMRAS2 project
[2].1

Why then create a new set of MIR tools based around
the SuperCollider (SC) [9, 16] synth and language? The

1There are also online web services offered by universities and com-
panies (such as services through the EchoNest API), but these are limited
in application for large audio databases, where work on a local machine
is much more flexible and uninhibited by upload and download limits,
and third party APIs not so open to researcher tweaking (it is impossi-
ble to modify the signal analysis routines provided by Tristan Jehan in
EchoNest, for example).

author has actually used all of the systems mentioned in
the previous paragraph, including for published projects
(see for example [3]), and each provides a worthwhile
contribution. Nonetheless, integration with SC’s own fa-
cilities is more difficult for these third party systems, and
a native solution allows a tighter leveraging of the Super-
Collider language in invoking tasks and using their results.
For example, the C++ codebase of SuperCollider offers
its own large set of analysis UGens which it would be
helpful to use for feature extraction operations.2 Seeking
ways to utilise MIR research in creative musical activity –
rather than just listener oriented music services – the Su-
perCollider language provides a flexible platform familiar
to many digital musicians. As a complete realtime sys-
tem allowing interactive exploration, a close connection
to sound synthesis and musical interaction can be estab-
lished, providing an intriguing bridge between computer
music creation and MIR.

SCMIR is available freely with full source code under
GNU GPL 3, from
http://www.cogs.susx.ac.uk/users/nc81/code.html .

2. CAPABILITIES

As illustration of typical workflow with the library, Fig-
ure 1 demonstrates a sequence of commands, leading from
feature extraction, through beat tracking, collection of fea-
tures by beats, calculating a similarity matrix, to a novelty
curve based sectional partition of an audio file (the later
two stages are packaged within a convenience command,
findSections). The running time for these operations over
the 3 minute sound file here is 4.5 seconds, 40 times real-
time.

Since version 0.6 of SCMIR, methods calls can be
made directly in the main thread of the SuperCollider lan-
guage. This may give the appearance of beachballing the
application (when it is really hard at work), so it is also
possible to wrap a set of SCMIR calls (including across a
large database) in a Routine via {}.fork; this puts the com-
mands on a separate thread, and allows posting of status
messages to the Post window during calculation.

We now say a little more about the library capabilities
with respect to the areas highlighted above.

2Conversely, the evaluation of new SC machine listening UGens is
facilitated by SCMIR as a feature extraction framework.

mailto:N.Collins@sussex.ac.uk
http://www.cogs.susx.ac.uk/users/nc81/code.html

(
f = SCMIRAudioFile("/mirdata/pixiesivebeentired.wav", [[MFCC, 13], [Chromagram, 12]]);
//for sound file to analyze, set features to extract as 13 MFCC coefficients + 12 chroma

f.extractFeatures();
f.extractBeats();
f.gatherFeaturesByBeats; //after this operation, featuredata will be beat locked
b = f.findSections(0,1,20);
//0 = cosine metric, 1 unit = 1 beat, checkerboard kernel 20 units a side

)

Figure 1. Example client code in SuperCollider invoking library commands. After this routine completes, global variable
b contains an array of estimated section boundary locations.

2.1. Feature Extraction

The SuperCollider machine listening UGens supported for
feature extraction include ZCR and RMS time domain
features, alongside MFCC, Loudness (perceptual loudness
model), Tartini (pitch tracker), SpecCentroid, SpecPcile,
SpecFlatness, FFTCrest, FFTSpread, FFTSlope, and the
Onsets UGen in raw detection function mode. These UGens
are found in vanilla SC, in plug-in packs for SuperCol-
lider, and additionally, two machine listening plugins have
been written and included with SCMIR: Chromagram (al-
lowing any n-note tuning at given reference frequency)
and SensoryDissonance (the algorithm follows Sethares’
sum of roughnesses for pairwise partials [13]).

As well as specifying a set of features to be extracted,
a normalization scheme can be declared. Two main schemes
are supported; normalization by max and min values to
put features into the range 0.0 to 1.0, and statistical stan-
dardization (subtract mean, divide by standard deviation,
to produce zero mean, standard deviation of 1). By de-
fault, normalization is mainly feature-wise, through it can
be defined over blocks of related features, such as MFCCs
or chroma. The findGlobalFeatureNorms() function al-
lows global feature ranges and statistics to be pre-calculated
over a corpus (and saved if needed for later use); other-
wise, normalization is with respect to values over the sin-
gle sound file currently being analyzed.

Features are taken by default over windows of 1024
samples3 at 44100 Hz sampling rate, with no overlap, giv-
ing a frame rate of around 43Hz; 512 overlap is also sup-
ported for a doubling of frame rate and higher time reso-
lution (at the expense of doubling calculation time). Mul-
tiple or single feature trails can be plotted from the library
using SuperCollider’s Pen drawing functionality.

2.2. Segmentation and Beat Tracking

Feature vectors generated per frame can be collected based
on arbitrary segmentations decided by the user, or ob-
tained by further algorithmic means. The collection is
via a (featurewise) mean, or a max, taken over each win-
dow of frames to gather. Onset detection via the Onsets

3Larger window sizes with overlap are used as needed, for instance,
4096 FFTs for chromagrams with 1024 hop size, and 2048 for spectral
envelope features with 1024 hop size

UGen can be used to find segment locations. Beat track-
ing is also available via the built-in BeatTrack SC UGen,
or the BeatRoot Java external [5]. This facility allows
beat locked feature data to be used for later analysis, or
a stepping stone to classification operations on events; it
also provides a general mechanism for non-realtime high
speed discovery of onsets and beat locations for any audio
file in SuperCollider.

2.3. Similarity Matrices

External programs4 invoked from the language enable fast
calculation of similarity matrices and novelty curves. A
choice of cosine, Manhattan and Euclidean metrics is avail-
able. Figure 2 shows a plot of a self similarity matrix for
Trevor Wishart’s electroacoustic opus Vox 5, a six minute
work. Similarity matrices can also be calculated between
two sound files, where rectangular similarity matrices are
supported as well as square.5. Novelty curves can be gen-
erated from convolution along the matrix diagonal with a
checkerboard kernel of required size [4]. Potential section
boundaries can be located in a subsequent peak picking
stage. The peak picker searches for candidate local max-
ima, with a points scoring scheme for peaks with respect
to their local surroundings, with a user determined thresh-
old on points scores. For comparison of sound files, se-
quence comparison is supported via Dynamic Time Warp-
ing over a similarity matrix, to get a best match score and
path. This can provide a potential alignment, or a measure
of sequence proximity.

2.4. Further Notes

The SCMIR system runs from the SuperCollider language,
invoking external programs, including the SuperCollider
synthesis server scsynth in Non-Real-Time (NRT) mode,
as needed.6 Externally running unix programs are either
piped (taking over the main thread), or otherwise in a side

4C source code for these programs, and precompiled binaries for OS
X, are provided with the library.

5See the SCMIRSimilarityMatrix help file for examples of using the
similarity matrix calculations even without audio files, on arbitrary input
data.

6Pending the lack of a current language plug-ins system for Super-
Collider, psuedo-language plug-ins via unix processes are perfectly ade-
quate for fast calculation.

(
f = SCMIRAudioFile("wishartvox5.wav", [[MFCC, 10],[Loudness],[SpecCentroid],[SpecPcile, 0.95],

[SpecPcile, 0.8],[SpecFlatness],[FFTCrest],[FFTCrest, 0, 2000], [FFTCrest, 2000, 10000],
[FFTSpread],[FFTSlope],[SensoryDissonance],[Onsets,\rcomplex]]);

//extraction of a large variety of features, with associated parameters

f.extractFeatures();
d = f.similarityMatrix(40, 0); //combine 40 frames per unit, metric 0 = cosine
f.plotSimilarity(d,2,19); //plot at twice size, with brightness factor 19

)

Figure 2. Self similarity matrix for Trevor Wishart’s Vox 5 (1986), calculated using the SCMIR code above

thread polled for the finishing of their process ID.7 In or-
der to efficiently move feature data from scsynth’s run-
ning machine listening plug-ins back to the language, a
further plug-in, FeatureSave, was written, wrapping file
write commands. SCMIR tidies up after itself, deleting
temporary files, and a temporary directory can be set.

SCMIR operations typically lead to collections of data,
such as feature signals, or a similarity matrix, which are
provided as SC collection objects or instances of SCMIR-
SimilarityMatrix for ease of use. Save and load of SCMI-
RAudioFiles (including associated extracted feature trails),
and global normalization templates, is provided via the
use of binary archive files. Feature data can also be out-
put as an ARFF file for external use with the Weka data
mining Java application [17].8

The library design has already gone through various it-
erations; at the time of writing, the version number is 0.6.
It is interesting to see the paradigms of feature gathering
and similarity matrix recur in MIR at various time levels
— for example, taking a similarity matrix over frames, or

7for those curious as to the exact mechanisms, see the class method
Meta SCMIR:external

8http://www.cs.waikato.ac.nz/ml/weka/

over beats, or over sections — the current version of the li-
brary is flexible enough to cope with extracting similarity
matrices with respect to these.

3. APPLICATIONS

The library has many practical uses. It can provide a front-
end for feature extraction operations, such as plotting the
psychoacoustic loudness across a track, or obtaining a fea-
ture vector sequence of Mel Frequency Cepstral Coeffi-
cients. The packaging of onset detection as a faster than
realtime offline facility helps in automatic segmentation
operations, or as a prelude to rhythmic analysis. Beat
tracking can be further used for analysis or mark-up of
tracks. It is straight forward to start to build concatenative
synthesis engines based on such feature extraction facil-
ities; the same features extracted offline, are also avail-
able for real-time extraction, since SuperCollider’s ma-
chine listening UGens are all inherently ready for inter-
active realtime use. SuperCollider also has available var-
ious machine learning UGens and language side facilities
(such as Neural Nets, SOM, reinforcement learning, etc.)
which can be used to create classifiers based on feature

http://www.cs.waikato.ac.nz/ml/weka/

data. Examples are provided with the SCMIR download
of genre recognition via calls to Weka from SuperCol-
lider, and artist recognition via the NeuralNet SuperCol-
lider class and external combination. A further file gives
help for invoking Weka from the command line via Super-
Collider’s unix command call facilities.9

SCMIR has application to automatic analysis; the au-
thor has been experimenting in applying it to electroa-
coustic music as well as popular music. Section bound-
ary identification is of interest in automatic discovery of
formal structure. The Wishart piece Vox 5, for example,
has been hand annotated, and the machine segmentations
of section compared. In particular, early section bound-
aries in the piece have matched consistently well (though
some later boundaries have proved more difficult to get
human and machine to agree on). Whilst MIR analysis is
not yet a replacement for human listening, there is defi-
nite potential here to assist analysts with interesting sug-
gestions, as other authors have already demonstrated [12].
The analysis engine also has potential as an automatic
critic for algorithmic composition works which integrate
an enhanced level of machine listening technology.

4. CONCLUSION

We can improve relations between feature-matching syn-
thesis, machine listening in interactive systems, and MIR
tasks, across realtime and non-realtime tasks, by prioritis-
ing adoption of MIR technology in interactive systems.

The SCMIR library brings music information retrieval
technologies to the heart of a well known existing com-
puter music programming language. Although the library
is by no means complete, and many facilities remain to be
handled (from HMMs for sequence modeling to further
native machine learning capabilities), a critical mass of
features is already in place to enable some interesting new
musical analysis capabilities for musical systems, and as
building blocks to support artistic engagement with MIR.

5. REFERENCES

[1] X. Amatriain, “CLAM: A framework for audio and
music application development,” IEEE Software,
vol. 24, no. 1, pp. 82–85, 2007.

[2] M. Casey, R. Veltkamp, M. Goto, M. Leman,
C. Rhodes, and M. Slaney, “Content-based music
information retrieval: Current directions and future
challenges,” Proceedings of the IEEE, vol. 96, no. 4,
pp. 668–696, April 2008.

[3] N. Collins, “Computational analysis of musical in-
fluence: A musicological case study using mir
tools,” in Proceedings of the International Sympo-
sium on Music Information Retrieval, Utrecht, Au-
gust 2010.

9At the time of writing, Naive Bayes and Gaussian Mixture Model
classes have also been created for native SuperCollider ready for a future
SCMIR 0.7 update.

[4] R. Dannenberg and M. Goto, “Music structure anal-
ysis from acoustic signals,” Handbook of Signal Pro-
cessing in Acoustics, vol. 1, pp. 305–331, 2009.

[5] S. Dixon, “Evaluation of the audio beat tracking
system beatroot,” Journal of New Music Research,
vol. 36, no. 1, pp. 39–50, 2007.

[6] J. S. Downie, “Music information retrieval,” An-
nual Review of Information Science and Technology,
vol. 37, pp. 295–340, 2003.

[7] D. P. Ellis, “Extracting information from music au-
dio,” Communications of the ACM, vol. 49, no. 8, pp.
32–37, 2006.

[8] O. Lartillot and P. Toiviainen, “A MATLAB tool-
box for musical feature extraction from audio,” in
International Conference on Digital Audio Effects
(DAFx), Bordeaux, France, September 2007.

[9] J. McCartney, “Rethinking the computer music lan-
guage: SuperCollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–8, 2002.

[10] D. McEnnis, C. McKay, and I. Fujinaga, “jAudio:
Additions and improvements,” in Proceedings of the
International Symposium on Music Information Re-
trieval, 2006.

[11] N. Orio, “Music retrieval: A tutorial and review,”
Foundations and Trends in Information Retrieval,
vol. 1, no. 1, pp. 1–90, 2006.

[12] T. H. Park, Z. Li, and W. Wu, “EASY does it: The
Electro-Acoustic music analYsis toolbox,” in Pro-
ceedings of the International Symposium on Music
Information Retrieval, Kobe, Japan, 2009.

[13] W. A. Sethares, “Consonance based spectral map-
pings,” Computer Music Journal, vol. 22, no. 1, pp.
56–72, 1998.

[14] M. Slaney, D. P. W. Ellis, M. Sandler, M. Goto, and
M. M. Goodwin, “Introduction to the special issue
on music information retrieval,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 16,
no. 2, pp. 253–254, 2008.

[15] G. Tzanetakis and P. Cook, “Marsyas: a framework
for audio analysis,” Organised Sound, vol. 4, pp.
169–175, 2000.

[16] S. Wilson, D. Cottle, and N. Collins, Eds., The Su-
perCollider Book. Cambridge, MA: MIT Press,
2011.

[17] I. H. Witten and E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques (2nd Ed).
San Francisco: Morgan Kaufmann Publishers, 2005.

	1 Introduction
	2 Capabilities
	2.1 Feature Extraction
	2.2 Segmentation and Beat Tracking
	2.3 Similarity Matrices
	2.4 Further Notes

	3 Applications
	4 Conclusion
	5 References

