
Transposition Invariance and Parsimonious Relation of Z Sets      

 

Introduction 

 

This article presents some new research into Z sets, that is, set classes without a 

unique interval class vector. Some novel results on self-transposing Z sets and the 

parsimonious relation of Z sets are given. The theorems are contextualised with 

respect to work of Dan Tudor-Vuza (Tudor-Vuza 1993), Stephen Soderberg 

(Soderberg 1995) and other music theorists who have tried to breach the defenses of Z 

sets as mathematical entities. The seemingly innocuous same interval vector property  

proves rather more intransigent under the microscope.  

   The relevance of Z sets to musical analysis is undisputed (see for instance the 

classic reference of Forte 1973). They provide an attractive resource for composers in 

allowing a match of intervallic content between distinct set classes, and hence a 

mechanism of ambiguity and modulation.  

   Where practical, proofs are kept as informal as possible. The reader may skip any 

mathematics as it appears in the text, but will otherwise require familiarity with group 

actions.   

   Before racing into results on Z sets, it would be wise to prepare our ground.  

 

Notation 

 

Unfortunately, notations vary from paper to paper. (Fripertinger 1999) gives a fully 

rigorous exposition of the algebraic combinatorics of music theory. To avoid an 

excess of notation, matters are simplified from that worthy text. The set of pitch 

classes 0 to n-1 is represented by the mathematical space Zn, a ring under modulo 

arithmetic addition and multiplication. Equivalence classes can be established on the 

power set of Zn under the action of the dihedral group generated by the well known 

operations of transposition T and inversion I. These equivalence classes are called 

(<T, I>) set classes by music theorists and (Morris 87) provides a good introduction to 

these matters. We can speak of set classes without qualification since we always deal 

herein with set classes with respect to transposition and inversion. The set of all set 

classes for Zn will be referenced in a relaxed way as if set classes 'belong' to Zn. The 



reader should understand from the context what particular construction on Zn is under 

investigation, and this will allow us to avoid introducing an extra layer of notation.   

    We denote the set class of a representative pitch class set A, /A/, following (Lewin 

1987). After Lewin again, if card A = M, then /A/ is a M-class.  

   This paper deals only with standard interval class vectors as present in Forte's 

famous list (Forte 1973, Appendix 1). The definition of the numerical interval 

between two pitch classes is the 'geodesic' definition. It might be helpful to think of 

the shortest possible distance around the outside of a Krenek diagram, as 

demonstrated in figure 1. 
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Figure 1 Krenek diagram showing the intervals in 4-Z29 

 

Definition Given a, b in Zn,  

 

int( a, b) = min ( b-a, n+a-b ) where n > b ≥ a ≥ 0  

 

The set of possible values of the int function over Zn is { 0, …, (n-1)/2 }for odd n, or  

{ 0, …,  n/2 }for even. These values are the representatives of what Forte calls 

interval classes. The interval classes contain those integers of Zn in the inverse image 

under int. In Z12 these would be   

 

/0/ = {0}, /1/= {1,11}, /2/= {2,10}, /3/= {3,9}, /4/= {4,8}, /5/= {5,7}, /6/ = {6} 

 



where /r/ again denotes an equivalence class with representative r. In the following, 

interval classes will be treated as synonymous with the (common) value of the 

function int across that class. 

   The interval vector for pitch class set A can be constructed by considering all 

possible pairs of pitch classes in A1. Taking the interval value for each pair, the 

interval vector will sort the data by holding the multiplicity of occurrence of each 

possible interval. Since interva ls are invariant under transposition and inversion, the 

interval vector for a set class /A/ is equal to that for any representative A. 

   If two distinct set classes have the same interval vector they are called Z partners. 

The term Z pair must be avoided in general since Z triples and Z collections with 

larger numbers of solutions can occur. Lewin was the first to find such examples; 

Soderberg reveals more in his cited paper. Individually a partner is a Z set, or Z chord. 

   We deal with orbits of the transposition operation Tj on Zn. Where j divides n these 

orbits were termed Φ-sets in Stephen Soderberg's 1995 paper. For example, the orbits 

of T2 in Z12 are the complementary whole tone sets {0, 2, 4, 6, 8, 10} and {1, 3, 5, 7, 

9, 11} and Soderberg would write them Φ(12, 0, 2) and Φ(12, 1, 2) respectively 

(section 3, page 82, Soderberg 1995). We shall use and extend this notation for 

dealing with a collection of orbits of Tj. For any j, n, and collection of representatives 

AI, 

( )U
IAk

jkn
∈

Φ ,,  

is the union of the orbits of Tj in Zn with index set of representatives AI. We do not 

require that j | n,  but will often deal with the case where (j, n) >1, that is, the greatest 

common divisor of j and n is greater than 1. If (j ,n) = 1, j and n are coprime. Note that 

the size of the orbit of Tj in Zn is given by n/(j, n). A union of such complete orbits 

will have cardinality some integer multiple of this number.    

   It is helpful to review two fundamental theorems for Z sets. The first asserts that Z 

partners must have the same M-class. This follows by a cardinality argument, noting 

that the number of ways of choosing distinct pairs from a set of M elements (M ≥ 2) is  

M!/(M-2)!2!= M.(M-1)/2, and the value of this as M goes from 2 to n in Zn is always 

distinct. The second is the well known Babbitt's theorem, applying only in Zn for even 

n. This states that the complement of a (n/2)-set has the same interval vector. So if the 

complement is not the set class itself, it must be a Z partner. Proofs of this result occur 



in (Soderberg 1995), (Lewin 1987) and a wonderfully concise proof based on group 

tables is in (Wilcox 1983).    

   We are now in a position to tackle some original results on Z sets. 

 

Z Sets and the Size of the Entries in an Interval Vector 

 

Can we obtain any information about uniqueness of interval vectors from numerical 

entries appearing in the vector? It turns out that this is not the case excepting in a very 

specific circumstance. 

 

Proposition In space Zn let the entry of interval j in the interva l vector of set class /A/ 

be num(j), where (j , n) = 1 (j and n are coprime). Then if num(j) ≥ (card A -1), /A/ 

has no Z partner.   

 

Proof By consideration of the orbits of Zn under Tj. Since j and n have no common 

divisor greater than 1, there is only one orbit. Write this orbit  

 

O(Tj)= {0, 0+j, 0+2j mod n, 0+3j mod n, …, 0 + (n-1)j mod n}.  

 

Any interval of size j can be traced to two consecutive elements in the orbit.  

If O(Tj) is of size 2, then the space is the trivial space Z2, and we can disregard that 

case. 

   There are at most n possible intervals of size j available (we must include the 

looparound from (n-1)j mod n back to 0). In order to obtain k intervals of size j from k 

elements, we would have to take all n pitch classes, since we need the looparound. 

But this tells us that /A/= /{0,…,n-1}/, which is always the singular n-class, and hence 

cannot have a Z partner. To obtain k-1 intervals of size j from k elements, we must 

take some consecutive chain subset from the orbit O(Tj), as {Lj mod n, …, (L+k-1)j 

mod n} for some integer L. (If this is not the case, then we have at least two separate 

chains. Each chain of elements from the orbit generation can only provide p intervals 

of size j for p+1 elements in the chain. So two chains can at best provide p-2 intervals 

from p selected elements). Up to transposition and inversion, this specifies k elements 



exactly. Since k= card A for our case, we have determined a unique set class from a 

given interval vector. So /A/ has no Z partners. 

 

   Counterexamples can be given to the above proposition, when (j, n) > 1. For in such 

a circumstance, there is more than one orbit of Tj  acting on Zn. By choosing different 

combinations of orbits, we can produce the same interval vector for different set 

classes. 

   A computer search reveals the first example of entries of size card A -1 in an 

interval vector in Z20. 

 

A= { 0, 1, 2, 5, 6, 7, 10, 12, 15, 17 } 

 

B= { 0, 1, 3, 5, 6, 8, 10, 11, 15, 16 } 

 

IV( /A/ ) = [ 4, 4, 4, 4, 9, 4, 4, 4, 4, 4 ] = IV( /B/ ) 

 

(card A = card B = 10) 

 

   Note that A could be written as two complete orbits of T5 plus the incomplete {1,6}, 

and B the two full orbits with {3,8} left over. 

   The first example for an entry of size card A in an interval vector appears in 

Z24. It is the unique example in the quartertone space. We may use Soderberg's 

notation to write the Z pair succinctly as a union of orbits of T8. Let the index sets of 

representatives be AI = { 0, 1, 2, 5 } and BI = { 0, 1, 3, 4 }. Then the Z partners A and 

B are2: 

A = ( )U
IAk

k
∈

Φ 8,,24  and B = ( )U
IBk

k
∈

Φ 8,,24  

IV( /A/ ) = [ 6, 3, 6, 6, 6, 3, 6, 12, 6, 3, 6, 3 ] = IV( /B/ ) 

 

This example shows us directly that Z sets can be self- transposing. The necessary and 

sufficient condition for a self transposing set class /A/ is that A be constructed as a 

union of complete Tj orbits. Then under Tj, A is transposition invariant. In the 



situation above, the interval vector of /A/ had an entry (for interval class j) of size card 

A; which must correspond to A being a union of complete Tj orbits.  

  Now, note that in Z16 

 

A = ( )U
IAk

k
∈

Φ 8,,16  and B = ( )U
IBk

k
∈

Φ 8,,16  

IV( /A/ ) = [ 4, 2, 4, 4, 4, 2, 4, 4 ] = IV( /B/ ) 

for the same AI and BI introduced above. Suddenly, we have self transposing Z 

partners A and B, with an entry for interval class 8 in the interval vector of 4. To 

explain this, remember that complete orbits of size 2 only provide one interval class 

per orbit.  

   We are close to a classification of all self transposing Z sets. As a second vital clue, 

it is not a coincidence that our AI and BI are actually Z sets in Z8. In fact, we can take 

the observations above as the basis of a proposition about self transposing Z sets. 

  

Proposition Given M class /A/, suppose A be a union of orbits of Tj in Zn with (j, n) 

>1. Write the index set of representatives for these orbits  

AI = { a1, …, ap } where all ai satisfy 0≤ ai < j, and p(n / (j, n)) = M. 

Similarly construct some B and BI. 

A = ( )U
IAk

jkn
∈

Φ ,,  and B = ( )U
IBk

jkn
∈

Φ ,,  

Then3 A is in the Z relation with B in Zn iff AI is in the Z relation with BI in Z(j, n). 

 

Note that when (j, n)=1 this theorem tells us nothing helpful; namely that A and B are 

Z partners in Zn iff they are Z partners in Zn! But in this case, A=B=Zn by the 

conditions of the proposition, since the orbit of Tj in Zn is Zn. 

 

Proof We must compare the idea of an interval in Z(j, n) with intervals in Zn. 

 

Suppose i1 ≠ i2 are in the same interval class in Z(j, n). Then 

i1 + i2 = (j, n)   (1) 

 

Write 



 

i1 + q (n, j) + n - i1 - q(n, j) = n (2) 

 

for any q ∈ { 0, …, n/(j, n) -1 } 

 

The equation represents that i1 + q(j, n) and n - i1 - q(j, n) are in the same interval class 

in Zn. We substitute into (2) as follows: 

 

i1 + q(j, n) + n + i2 - (j, n)  - q(j, n) = n using (1) 

 

i1 + q(j, n) + i2 + (n/(j, n) - q -1 )(j, n) = n  

 

So i1 + q(j,n) is in the same interval class as i2 + q'j where q'= (n/(j, n) -q -1). 

As q takes on  successive integers from 0 to  n/(j, n) - 1, q' covers n/(j, n) - 1 to 0 

respectively. 

   The set of interval classes in Zn generated in this manner from a particular interval 

class in Z(j, n) are the same. So given orbits of Tj in Zn, the set of interval classes 

arising between them is the same iff the representatives of those orbits (taken of 

course in the range 0 ≤ a < j) are in the same interval class in Z(j, n). This proves the 

proposition. 

 

   The cardinalities involved imply that in order to find self- transposing Z sets we can 

utilise well known Z sets. The first occurring Z sets are in Z8 as given above. The 

smallest non trivial orbit is of cardinality two. The first example of self transposing Z 

sets occurs in Z16.  It is a unique example because there is only one pair of Z sets in 

Z8.  The proposition is useful for construction; it tells us when the next examples can 

occur. This is in Z20, because we can find Z sets in Z10 and use the size 2 orbits of T10 

in Z20. There should be three such examples since there are three distinct pairs of Z 

partners in Z10.   

   The proposition can be simplified in its application, as the orbits of Tj in Zn are the 

same as the orbits of T(j, n) in Zn. We need only worry about j such that (j, n)=j, since 

any other situation will simply provide duplicates of the Z sets we discover in the 

simpler case.     



 

   The reader may be interested to know that the proposition would allow the 

construction of an infinite set of self- transposing Z sets across all Zn :  

 

Proposition Self- transposing Z sets occur in Zn for all n ≥ 28 where n can be 

factored as pq,  p ≥ 14 and q ≥ 2. 

 

Proof Use the special first INTNOMOD Z set pair from (Collins 2000). They have 

the property of revealing representatives for Z set classes in Zn for all n>=14.  

 

As a final example, we may construct self transposing Z sets in Z99 using the 

INTNOMOD set pair in Z33 and thus orbits of size 3: 

 

AI = { 0, 1, 4, 5, 6, 7, 8, 9, 11 } BI = { 0, 1, 2, 3, 4, 6, 7, 8, 11 } 

A = ( )U
IAk

k
∈

Φ 33,,99  and B = ( )U
IBk

k
∈

Φ 33,,99  

 

We can spare ourselves the 49 entry interval vector. A computer quickly confirms the 

validity of the example (even if the power set of Z99 is too big to exhaustively search). 

Note that /A/ and /B/ are distinct set classes since B involves chromatic runs of length 

5 whilst A has ones of length 6.  

   It is left as an open research problem to consider more than one interval vector entry 

at once. There are Z sets /A/, /B/ in Z12 with two entries of size card A - 2 in their 

interval vector, but can we ever have two entries of size card A -1 or above in an 

interval vector?  

 

Z Sets and Parsimonious Operations 

 

Parsimonious transformation is an extremely current research stream in music theory. 

We cite the special edition of The Journal of Music theory devoted to work on neo-

Riemannian theory, in particular the article on parsimonious graphs (Douthett and 

Steinbach 1998) from which the notation presented here is lifted.  

 



Definition Pcsets A and B are in the Pm,n relation (A Pm,n B) iff there exists a 

permutation σ mapping A to B such that σ is a product of distinct involutions: 

 

σ = (p1 p2) … (p2(m+n)-1 p2(m+n) ) all pi distinct and increasing 

where the multiplicity of these is such that  

int (pi, pi+1) = 1 for m involutions, and int (pi, pi+1) = 2 for n 

 

Generalisations of the Pm,n relation would allow permutations of more than 2 

semitones distance, but we have enough to express the theorem I wish to introduce 

here: 

 

Proposition If two pcsets A, B in Zn satisfy A P1,0 B and A has the same interval 

vector as B, then /A/= /B/. 

Proof Without loss of generality, consider only the case where the parsimonious shift 

is from pitch class 0 to 1. A contains 0 and not 1, B contains 1 and not 0. This is 

possible since interval content is invariant under transposition and inversion, and A 

may be freely relabelled such that the shift is leftwards from 0 to 1. 

 

Write  

A = {0, a1, …, aM, aM+1, …, aM+N} 

B = {1, a1, …, aM, aM+1, …, aM+N} 

 

AM= {a1, …, aM }, AN= { aM+1, …, aM+N } 

 

A= AM ∪ AN ∪ {0} 

B= AM ∪ AN ∪ {1} 

 

The ais are increasing for all i, 

where 1< ai ≤ n/2 for 1 ≤ i ≤ M 

and n/2 < ai < n for M+1 ≤ i ≤ M+N. 

 

Under the assumptions that A P1,0 B and the interval vector of A equals that of B it 

will be shown that M = N, and B= T1I(A) (B= I1A). This equation is equivalent to the 



symmetricity of A and B about an axis through 1/2 and n/2+1/2, and shows 

immediately that /A/= /B/. 

   The elements ai of A and B have been split up in such a way that the change of 

interval class after P1,0 can be easily handled. The only intervals that may change 

under the transformation are those in A written int( 0, ai ) becoming int( 1, ai ) for B's 

interval vector. We disregard all other intervals from our consideration. 

   Note that 

 

int( 0, ai ) = ai and int( 1, ai ) = ai-1 for 1 ≤ i ≤ M               (1) 

int( 0, ai ) = n-ai and int( 1, ai ) = n-ai +1 for M+1 ≤ i ≤ M+N (2) 

 

Because of the choice of the ai, there is no need to worry about the odder aspects of 

interval classes (in Z12, ic 6 +1 = ic 5 et al). The reader will observe that the operator 

P1,0 shifts the interval classes by one step, and that the shift is in contrary direction for 

case (1) and (2).  

   Let I be the greatest interval class occurring in A. This interval must be formed as 

either int(0, aM+1) or int(0, aM). If the former alone, then under P1,0 this interval 

increases to n- aM+1+ 1, which does not occur for any int( 0, ai ) in A, contradicting the 

hypothesis that A and B have equal interval vectors. There is one special case for n 

odd, in which aM+1 is on the axis of symmetry through 1/2 and n/2+1/2 and  

int( 0, aM+1 )= int (1, aM+1), but this case fits the result desired, and we proceed 

iteratively as below knowing it cannot recur. Otherwise we must have int( 0, aM ) as 

the single largest interval in A of that form. Under P1,0, there must be some  

int( 1, aj ) to match it. It is quickly seen that only int( 1, aM+1 ) could be the interval. 

We have shown that 

 

int( 1,aM+1 ) = n- aM+1 +1 = aM = int( 0, aM ) and 

int( 0,aM+1 ) = n- aM+1 = aM-1= int( 1, aM )  

 

Now proceed iteratively, considering the remaining greatest interval class 

unaccounted for each time. It will be seen that we pair off ai such that 

 

int( 1, aM+N+1-i ) = n- aM+N+1 -i +1 = ai = int ( 0, ai )  1 ≤ i ≤ M (3) 



int( 0, aM+N+1-i ) = n- aM+N+1 -i = ai -1 = int ( 1, ai ) 

 

and that M = N, else a contradiction must occur as above. (3) says that as pitch classes 

modulo n 

 

aM+N+1-i= -ai +1  1 ≤ i ≤ M 

 

which is really the assertion B= T1I(A) as desired.  

  

Corollary Z sets cannot be related by a single P1,0 shift between representatives. 

  

   To assist in a rough understanding of the proof, figure 2 shows the P1,0 

transformation in the specific case of the set { 0, 3, 6, 9 }in Z11, where the interval 

vector is preserved. Only those intervals affected by the shift are marked. The axis of 

inversion is demonstrated through 1/2 and 1/2+11/2. The reader can easily convince 

themselves that if the pitch class set was { 0, 3, 6, 8 }then the interval vector could not 

be preserved under P1,0. 
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Figure 2 A specific case of preservation of interval vector under P1,0 

 

It doesn't take long to discover that for their standard representatives 4-Z15 P2,0 4-Z29 

and that 5-Z18 P1,1 5-Z38. The reader might wonder whether interval vectors are 

preserved under more generally defined P(0,…,0,1,0,…,0) transformations iff /A/ = 



/B/. Then note that { 0, 1, 3, 7 }under permutation (0,6) is { 1, 3, 6, 7 }which under 

T7I = { 0, 1, 4, 6 }.  I might speculate that if a permutation causes a swap of elements 

pi and pj of a pitch class set A such that there exists a further element pk satisfying 

pi<pk<pj then no proof is possible. I leave it as an open problem whether a theorem 

could be proven if this is not the case. Seeking an axis of symmetry for A about q/2 

and p/2+ q/2 where q is the step size of the singular involution in the permutation, will 

familiarise the reader with how the 'choice' of one of two elements of an interval class 

interferes with proofs!    

 

Towards a Z Set Property List? 

 

To put these new propositions in context, we can try to bring together a current state 

of knowledge on Z sets. 

   There's no need to go outside Z12 to find examples of a self inverse Z set. 5-Z12 =  

/{ 0, 1, 3, 5, 6 }/ has difference set [[ 1,2,2,1,6 ]] (notation as Soderberg 1995) which 

is obviously unaffected by inversion.   

   Referring to (Clough et al 1997) for the concept of spectrum, further note that the 

<1> (spectrum of diatonic length 1) is not unique for Z sets. 6-Z17 and 6-Z43 share 

<1>= {1,1,1,2,3,4} and are not Z partners with each other. It is uncertain whether a 

proposition could be constructed of general applicability to Z sets based on <2>, <3> 

etc. 

   If the reader is discouraged by this point from attempts to prove general assertions 

about Z sets, they may find table 1 a comfort; the Z sets increasingly saturate the 

larger pitch class spaces. (This table was created using a computer search with the 

author's custom C++ program4). 

   The reader who perceives some discrepancy in the table due to an odd count of Z 

sets is forgetting the existence of Z triples and the like. 

 

 

 

 

 



Table 1 Frequencies of Z sets for Zn 8 ≤  n ≤  24 

n interval 

classes 

#set 

classes 

#Z set classes # Z from 

Generalised 

Hexachord 

Theorem 

proportion 

(proportion from 

GHT) 

8 4 30 2 2 6.6% (6.6%) 

9 4 46 0  0% 

10 5 78 6 6 7.69% (7.69%) 

11 5 126 0  0% 

12 6 224 46 30 20.5% (13.39%) 

13 6 380 12  3.16% 

14 7 687 144 96 20.96% (13.97%) 

15 7 1224 160  13.07% 

16 8 2250 728 366 32.36% (16.27%) 

17 8 4112 368  8.95% 

18 9 7685 2766 1258 35.99% (16.37%) 

19 9 14310 1296  9.06% 

20 10 27012 10403 4481 38.5% (16.59%) 

21 10 50964 9268  18.19% 

22 11 96909 32085 15605 33.11% (16.10%) 

23 11 184410 15708  8.52% 

24 12 352698 162974 55838 46.21% (15.83%) 

 

   There are always more Z sets for the even n pitch class spaces because of Babbitt's 

theorem. The proportions of set classes that are Z sets is surely dependent on the 

prime decomposition of n, so the proportions fall off for n=19 and n=23. To what 

degree can Z sets saturate the higher order spaces? The Z sets could never entirely 

saturate a space since there is always a unique n-class for Zn. Yet given that 46 

percent of set classes in Z24 are Z sets, around half of chord types selected by a 

quartertonal composer would have Z partners available! With the degree of saturation 

exhibited, it is hard to predict any of the simpler properties of set classes studied by 

music theorists providing general propositions. 



    Let us begin to round up what we know, and what headway other theorists have 

managed to make.  

   In terms of existence, (Collins 2000) proves the existence of Z sets across all Zn for 

n≥12, and the results for the smaller cardinalities are already known by computer 

search.  

   Steven Soderberg's paper on dual inversions (Soderberg 1995) introduces the idea of 

Q-grids, which may assist the discovery of Z sets in some specific cases. Whilst his 

work  may potentially be generalised to unions of more than two orbits of a Tj under 

tighter conditions, there is currently no proof that every possible Z set must result 

from some Q grid. Soderberg's work does not guarantee any surefire procedure for 

constructing Z sets alone, but it does provide a tantalising glimpse of conditions 

sufficient to create them. It is possible that a general Z set theorem might follow from 

this work, but a temporary conclusion is that Soderberg has discovered a particular 

breed of Z sets, call them 'Soderberg Z chords' if you will. 

   The full problem of Z sets can be set in the context of the algebraic Fourier 

transform. Lewin was the first to recognise this (Lewin 1987) though the most 

advanced exposition of this problem is in (Tudor Vuza 1993). Dan Tudor Vuza uses 

algebraic fourier methods to solve a more restricted case particular to his canon 

spaces. For the general problem of Z sets the task seems almost impossible without 

any restriction on the characteristic functions involved. It is certain that the transform 

methods may yet prove a potent tool for the greater understanding of Z sets. 

   The Z sets sit within a wider context of polychord content vectors, and set class 

decompositions in terms of M-classes. Again, Lewin gives a lot of the initial work in 

this area , though (Collins 1999) demonstrates a Z pair with respect to the trichord 

vector. Since the embeddings increase in complexity from 2-set embedding (interval 

classes), we would not expect to solve our interval class problem from this route! 

  For the current property list for Z sets, we'd have to include many negatives rather 

than positives: 

 

1. Z sets can be self-transposing 

2. Z sets can be self- inverting 

3. Z sets do not have unique <1> (spectrums of diatonic length 1) 

 

The positives can be summarised thus 



 

4. Z sets A, B must both be M-classes for some M  

5. No Z set representatives are in the P(1,0) relation 

6. Under particular conditions of 'dual inversion' given in (Soderberg 1995), Z 

sets may arise 

7.  If /A/ is an n/2-class in Zn, n even, then the complement of A, A', will either 

give a Z partner /A'/, or /A/ = /A'/ 

 

Even though their discovery is often a setback to finding simple properties for Z sets, 

the Z sets revealed by this paper can be a useful resource. In particular I must mark 

out the relatively few self transposing Z sets in Z24 as an intriguing chord type for 

quarter-tonal music. There is a unique pair constructed using orbits of order three, 

listed in this paper, and 23 examples which can be constructed using the Z pairs in Z12 

and orbits of size 2. Certainly the transposition invariant Z sets in the quartertone 

space are special compared to the 46% of set classes with Z partners!  
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1 Lewin's EMB function (Lewin 1987) is avoided in this article as an unnecessary complication. 
2 This could also be expressed as a special product:  

A = { 0, 1, 2, 5 }⊕  { 0, 8, 16 } 

B = { 0, 1, 3, 4 }⊕ { 0, 8, 16 } 
 
The plus denotes that the pitch class set A is constructed from any addition of an integer from the left 
hand set and an integer from the right. 
3 This conclusion is equivalent to /A/ Z /B/ in Zn iff /AI/ Z /BI/ in Z(j,n) 
4 The author has not yet verified these values with the Polya theorem derived formulae in (Fripertinger 
1999) 


